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The usual interpretations of solutions for the gravitational field in a spherically symmetric
Type I Einstein space contain mathematical anomalies. It is shown herein that the usual
solutions must be modified to account for the intrinsic geometry associated with the rele-
vant line elements, by which the geometrical relations between the components of the metric
tensor are consequently invariant. A geometry is entirely determined by the form of the line
element describing it. The usual solutions violate the intrinsic geometry of the associated
line elements and are therefore inadmissible. Correct application of the intrinsic geometry
has significant consequences for the standard models of Einstein’s gravitational field.
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1 Introduction

The usual spherically symmetric static vacuum solution for a Type 1 Einstein space satis-
fying the condition Rµν = 0 is based upon a generalisation of the line element for standard
Minkowski space. Minkowski’s standard line element is (using c = G = 1),

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdϕ2),

0 ≤ r < ∞.

The generalisation of this line element has the form,

ds2 = A
(√

C(r)
)

dt2 −B
(√

C(r)
)

d
√

C(r)
2
− C(r)(dθ2 + sin2 θdϕ2),

where A
(√

C(r)
)

, B
(√

C(r)
)

, C(r) are a priori unknown positive-valued analytic func-
tions that must be determined by the intrinsic geometry of the line element and associated
boundary conditions, satisfying the condition Rµν = 0. Similarly, the range of the parameter
r must also be determined by the intrinsic geometry of the line element. However, the usual
practice is to preempt the form of the analytic function C(r) by arbitrarily asserting that
C(r) = r2, so that the generalisation of Minkowski’s line element takes the restricted form,

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θdϕ2),

wherein g00 ≡ A(r), g11 ≡ −B(r), g22 ≡ −r2, g33 ≡ −r2 sin2 θ become the components of
the associated metric tensor.
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By setting C(r) = r2 the possibility of determining its general analytic form, of which
C(r) = r2 is but a particular case, is overlooked, and the resulting line element usually
obtained for Rµν = 0 has consequently been misinterpreted, owing to a number of latent
assumptions introduced with the setting of C(r) = r2, compounded by neglect of the intrinsic
geometry of the line element, producing thereby a violation of basic elements of differential
geometry and hence the drawing of false conclusions as to the geometric structure of Einstein’s
gravitational field.

2 Spherical symmetry of three-dimensional metrics

Following the method suggested by Palatini, and developed by Levi-Civita (Levi-Civita 1977),
denote ordinary Efcleethean 2 3-space by E3. Let M3 be a 3-dimensional metric manifold.
Let there be a one-to-one correspondence between all points of E3 and M3. Let the point
O ∈ E3 and the corresponding point in M3 be O′. Then a point transformation T of E3 into
itself gives rise to a corresponding point transformation of M3 into itself.

A rigid motion in a metric manifold is a motion that leaves the metric d`
′2 unchanged.

Thus, a rigid motion changes geodesics into geodesics. The metric manifold M3 possesses
spherical symmetry around any one of its points O′ if each of the ∞3 rigid rotations in E3

around the corresponding arbitrary point O determines a rigid motion in M3.
The coefficients of d`

′2 of M3 constitute a metric tensor and are naturally assumed to be
regular in the region around every point in M3, except possibly at an arbitrary point, the
centre of spherical symmetry O′ ∈M3.

Let a ray i emanate from an arbitrary point O ∈ E3. There is then a corresponding
geodesic i′ ∈ M3 issuing from the corresponding point O′ ∈ M3. Let P be any point on i
other than O. There corresponds a point P ′ on i′ ∈M3 different to O′. Let g′ be a geodesic
in M3 that is tangential to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corresponds ∞1 rigid motions in M3

that leaves only all the points on i′ unchanged. If g′ is distinct from i′, then the ∞1 rigid
rotations in E3 about i would cause g′ to occupy an infinity of positions in M3 wherein g′

has for each position the property of being tangential to i′ at P ′ in the same direction, which
is impossible. Hence, g′ coincides with i′.

Thus, given a spherically symmetric surface Σ in E3 with centre of symmetry at some
arbitrary point O ∈ E3, there corresponds a spherically symmetric geodesic surface Σ′ in M3

with centre of symmetry at the corresponding point O′ ∈M3.
Let Q be a point in Σ ∈ E3 and Q′ the corresponding point in Σ′ ∈ M3. Let dσ be a

generic line element in Σ issuing from Q. The corresponding generic line element dσ′ ∈ Σ′

issues from the point Q′. Let Σ be described in the usual spherical-polar coordinates r, θ, ϕ.
Then

dσ2 = r2(dθ2 + sin2 θdϕ2), (1)

r = |ŌQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence also Q′ in Σ′. Therefore, θ and ϕ
can be considered to be curvilinear coordinates for Q′ in Σ′ and the line element dσ′ ∈ Σ′

will also be represented by a quadratic form similar to (1). To determine dσ′, consider two

2For the geometry due to Efcleethees, usually and abominably rendered as Euclid.
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elementary arcs of equal length, dσ1 and dσ2 in Σ, drawn from the point Q in different
directions. Then the homologous arcs in Σ′ will be dσ′1 and dσ′2, drawn in different directions
from the corresponding point Q′. Now dσ1 and dσ2 can be obtained from one another by a
rotation about the axis ŌQ in E3, and so dσ′1 and dσ′2 can be obtained from one another by
a rigid motion in M3, and are therefore also of equal length, since the metric is unchanged
by such a motion. It therefore follows that the ratio dσ′

dσ is the same for the two different
directions irrespective of dθ and dϕ, and so the foregoing ratio is a function of position, i.e.
of r, θ, ϕ. But Q is an arbitrary point in Σ, and so dσ′

dσ must have the same ratio for any
corresponding points Q and Q′. Therefore, dσ′

dσ is a function of r alone, thus

dσ′

dσ
= H(r),

and so
dσ

′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2 θdϕ2), (2)

where H(r) is a priori unknown. For convenience set Rc = Rc(r) = H(r)r, so that (2)
becomes

dσ
′2 = R2

c(dθ2 + sin2 θdϕ2), (3)

where Rc is a quantity associated with M3. Comparing (3) with (1) it is apparent that Rc is
to be rightly interpreted in terms of the Gaussian curvature K at the point Q′, i.e. in terms
of the relation K = 1

R2
c

since the Gaussian curvature of (1) is K = 1
r2 . This is an intrinsic

property of all line elements of the form (3) (Levi-Civita 1977; O’Neill 1983). Accordingly,
Rc can be regarded as a radius of curvature. Therefore, in (1) the radius of curvature is
Rc = r. Moreover, owing to spherical symmetry, all points in the corresponding surfaces Σ
and Σ′ have constant Gaussian curvature relevant to their respective manifolds and centres
of symmetry, so that all points in the respective surfaces are umbilic.

Let the element of radial distance from O ∈ E3 be dr. Clearly, the radial lines issuing from
O cut the surface Σ orthogonally. Combining this with (1) by the theorem of Pythagoras
gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2 θdϕ2). (4)

Let the corresponding radial geodesic element from the point O′ ∈ M3 be dRp. Clearly the
radial geodesics issuing from O′ cut the geodesic surface Σ′ orthogonally. Combining this
with (3) by the theorem of Pythagoras gives the line element in M3 as,

d`
′2 = dR2

p + R2
c(dθ2 + sin2 θdϕ2), (5)

where dRp is, by spherical symmetry, also a function only of Rc. Set dRp =
√

B(Rc)dRc, so
that (5) becomes

d`
′2 = B(Rc)dR2

c + R2
c(dθ2 + sin2 θdϕ2), (6)

where B(Rc(r)) is an a priori unknown function.
Expression (6) is the most general for a metric manifold M3 having spherical symmetry

about some arbitrary point O′ ∈M3 (Levi-Civita 1977; Eddington 1923).
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Considering (4), the distance Rp = |ŌQ| from the point at the centre of spherical sym-
metry O to a point Q ∈ Σ, is given by

Rp =
∫ r

0

dr = r = Rc.

Call Rp the proper radius. Consequently, in the case of E3, Rp and Rc are identical, and
so the Gaussian curvature at any point in E3 can be associated with Rp, the radial distance
between the centre of spherical symmetry at the point O ∈ E3 and the point Q ∈ Σ. Thus,
in this case, K = 1

R2
c

= 1
R2

p
= 1

r2 . However, this is not a general relation, since according

to (5) and (6), in the case of M3, the radial geodesic distance from the centre of spherical
symmetry at the point O′ ∈M3 is not given by the radius of curvature, but by

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

∫ r

0

√
B(Rc(r))

dRc(r)
dr

dr,

where Rc(0) is a priori unknown owing to the fact that Rc(r) is a priori unknown. One
cannot simply assume that because 0 ≤ r < ∞ in (4) that it must follow that in (5) and (6)
0 ≤ Rc(r) < ∞. In other words, one cannot simply assume that Rc(0) = 0. Furthermore, it
is evident from (5) and (6) that Rp determines the radial geodesic distance from the centre
of spherical symmetry at the arbitrary point O′ in M3 (and correspondingly so from O in
E3) to another point in M3. Clearly, Rc does not in general render the radial geodesic length
from the centre of spherical symmetry to some other point in a metric manifold. Only in the
particular case of E3 does Rc render both the Gaussian curvature and the radial distance
from the centre of spherical symmetry, owing to the fact that Rp and Rc are identical in that
special case.

It should also be noted that in writing expressions (4) and (5) it is implicit that O ∈ E3 is
defined as being located at the origin of the coordinate system of (4), i.e. O is located where
r = 0, and by correspondence O′ is defined as being located at the origin of the coordinate
system of (5), i.e. using (5) or (6), O′ ∈ M3 is located where Rp = 0. Furthermore, since
it is well known that a geometry is completely determined by the form of the line element
describing it (Tolman 1987), expressions (4), (5) and (6) share the very same fundamental
geometry because they are line elements of the same form.

Expression (6) plays an important rôle in Einstein’s gravitational field.

3 The standard solution

The standard solution in the case of the static vacuum field (i.e. no deformation of the
space) of a single gravitating body, satisfying Einstein’s field equations Rµν = 0, is (using
G = c = 1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2), (7)

where m is allegedly the mass causing the field, and upon which it is routinely claimed that
2m < r < ∞ is an exterior region and 0 < r < 2m is an interior region. Notwithstanding
the inequalities it is routinely allowed that r = 2m and r = 0 by which it is also routinely
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claimed that r = 2m marks a “removable” or “coordinate” singularity and that r = 0 marks
a “true” or “physical” singularity (Misner et al. 1973).

The standard treatment of the foregoing line-element proceeds from simple inspection of
(7) and thereby upon the following unproven assumptions:

(a) that there is only one radial quantity defined on (7);

(b) that r can approach zero, even though the line element (7) is singular at r = 2m;

(c) that r is the radial quantity in (7) (r = 2m is even routinely called the “Schwarzschild
radius” (Misner et al. 1973).)

With these unstated assumptions, but assumptions nonetheless, it is usual procedure to
develop and treat of black holes. However, all three assumptions are demonstrably false at
an elementary level.

4 That assumption (a) is false

Consider standard Minkowski space (using c = G = 1) described by

ds2 = dt2 − dr2 − r2(dθ2 + sin2 θdϕ2), (8)

0 ≤ r < ∞.

Comparing (8) with (4) it is easily seen that the spatial components of (8) constitute a line
element of E3, with the point at the centre of spherical symmetry at r0 = 0, coincident with
the origin of the coordinate system.

In relation to (8) the calculated proper radius Rp of the sphere in E3 is,

Rp =
∫ r

0

dr = r, (9)

and the radius of curvature Rc is
Rc = r = Rp. (10)

Calculate the surface area of the sphere:

A =
∫ 2π

0

∫ π

0

r2 sin θdθdϕ = 4πr2 = 4πR2
p = 4πR2

c . (11)

Calculate the volume of the sphere:

V =
∫ 2π

0

∫ π

0

∫ r

0

r2 sin θdrdθdϕ =
4
3
πr3 =

4
3
πR3

p (12)

=
4
3
πR3

c .

Then for (8), according to (9) and (10),

Rp = r = Rc. (13)
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Thus, for Minkowski space, Rp and Rc are identical. This is because Minkowski space is
pseudo-Efcleethean.

Now comparing (7) with (5) and (6) is is easily seen that the spatial components of (7)
constitute a spherically symmetric metric manifold M3 described by

d`
′2 =

(
1− 2m

r

)−1

dr2 + r2dΩ2,

where dΩ2 = dθ2 + sin2 θdϕ2, and which is therefore in one-to-one correspondence with E3.
Then for (7),

Rc = r,

Rp =
∫ √

r

r − 2m
dr 6= r = Rc.

Hence, RP 6= Rc in (7) in general. This is because (7) is non-Efcleethean (it is pseudo-
Riemannian). Thus, assumption (a) is false.

5 That assumption (b) is false

On (7),

Rp = Rp(r) =
∫ √

r

r − 2m
dr

=
√

r (r − 2m) + 2m ln
∣∣√r +

√
r − 2m

∣∣+ K, (14)

where K is a constant of integration.
For some r0, Rp(r0) = 0, where r0 is the corresponding point at the centre of spherical

symmetry in E3 to be determined from (14). According to (14), Rp(r0) = 0 when r = r0 = 2m
and K = −m ln 2m. Hence,

Rp(r) =
√

r (r − 2m) + 2m ln
(√

r +
√

r − 2m√
2m

)
. (15)

Therefore, 2m < r < ∞ ⇒ 0 < Rp < ∞, where Rc = r. The inequality is required to
maintain Lorentz signature, since the line-element is undefined at r0 = 2m, which is the only
possible singularity on the line element. Thus, assumption (b) is false.

It follows that the centre of spherical symmetry of E3, in relation to (7), is located not at
the point r0 = 0 in E3 as usually assumed according to (8), but at the point r0 = 2m, which
corresponds to the point Rp(r0 = 2m) = 0 in the metric manifold M3 that is described
by the spatial part of (7). In other words, the point at the centre of spherical symmetry
in E3 in relation to (7) is located at any point Q in the spherical surface Σ for which the
radial distance from the centre of the coordinate system at r = 0 is r = 2m, owing to the
one-to-one correspondence between all points of E3 and M3. It follows that (7) is not a
generalisation of (8), as usually claimed. The manifold E3 of Minkowski space corresponding
to the metric manifold M3 of (7) is not described by (8), because the point at the centre of
spherical symmetry of (8), r0 = 0, does not coincide with that required by (14) and (15),
namely r0 = 2m.
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In consequence of the foregoing it is plain that the expression (7) is not general in relation
to (8) and the line element (7) is not general in relation to the form (6). This is due to the
incorrect way in which (7) is usually derived from (8), as pointed out in (Abrams 1980;
Crothers 2005; Antoci 2001). The standard derivation of (7) from (8) unwittingly shifts
the point at the centre of spherical symmetry for the E3 of Minkowski space from r0 = 0
to r0 = 2m, with the consequence that the resulting line element (7) is misinterpreted in
relation to r = 0 in the E3 of Minkowski space as described by (8). This unrecognised shift
actually associates the point r0 = 2m ∈ E3 with the point Rp(2m) = 0 in the M3 of the
gravitational field. The usual analysis then incorrectly associates Rp = 0 in M3 with r0 = 0
in E3 instead of with the correct r0 = 2m in E3, thereby inventing a so-called “interior”,
as typically alleged (Misner et al. 1973), that actually has no relevance to the problem — a
completely meaningless manifold that has nothing to do with the gravitational field and so is
disjoint from the latter, as also noted in (Abrams 1980; Loinger 2002; Smoller & Temple 1998;
Crothers 2006). The point at the centre of spherical symmetry of Einstein’s gravitational
field in M3 is Rp = 0. Thus the notion of an “interior” manifold under some other coordinate
patch (such as the Kruskal-Szekeres coordinates) is incorrect. This is clarified in the next
section.

6 That assumption (c) is false

Generalise (8) so that the centre of a sphere can be located anywhere in
Minkowski space, relative to the origin of the coordinate system at r = 0, thus

ds2 = dt2 − (d |r − r0|)2 − |r − r0|2 dΩ2

= dt2 − (r − r0)
2

|r − r0|2
dr2 − |r − r0|2 dΩ2

= dt2 − dr2 − |r − r0|2 dΩ2, (16)

0 ≤ |r − r0| < ∞,

which is well-defined for all real r. The value of r0 is arbitrary. The spatial components
of (16) describe a sphere of radius D = |r − r0| centred at some point r0 on a common
radial line through r and the origin of coordinates at r = 0 (i.e. centred at the point of
orthogonal intersection of the common radial line with the spherical surface r = r0). Thus,
the arbitrary point r0 is the centre of spherical symmetry in E3 for (16) in relation to the
problem of Einstein’s gravitational field, the spatial components of which is a spherically
symmetric metric manifold M3 with line element of the form (6) and corresponding centre
of spherical symmetry at the point Rp(r0) = 0 ∀ r0. If r0 = 0 and r ≥ 0 is taken, (8)
is recovered from (16). One does not need to make r0 = 0 so that the centre of spherical
symmetry in E3, associated with the metric manifold M3 of Einstein’s gravitational field,
coincides with the origin of the coordinate system itself, at r = 0. Any point in E3, relative
to the coordinate system attached to the arbitrary point at which r = 0, can be regarded
as a point at the centre of spherical symmetry in relation to Einstein’s gravitational field.
Although it is perhaps desirable to make the point r0 = 0 the centre of spherical symmetry
of E3 correspond to the point Rp = 0 at the centre of symmetry of M3 of the gravitational
field, to simplify matters somewhat, this has not been done in the usual analysis of Einstein’s
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gravitational field, despite appearances, and in consequence thereof false conclusions have
been drawn owing to this fact going unrecognised in the main.

Now on (16),
Rc = |r − r0| ,

Rp =
∫ |r−r0|

0

d |r − r0| =
∫ r

r0

(r − r0)
|r − r0|

dr = |r − r0| ≡ Rc, (17)

and so Rp = Rc on (16), since (16) is pseudo Efcleethean. Setting D = |r − r0| for conve-
nience, generalise (16) thus,

ds2 = A(C(D))dt2 −B(C(D))d
√

C(D)
2
− C(D)dΩ2, (18)

where A(C(D)) > 0, B(C(D)) > 0, C(D) > 0. Then for Rµν = 0, metric (18) has the
solution,

ds2 =

(
1− α√

C(D)

)
dt2 −

(
1− α√

C(D)

)−1

d
√

C(D)
2
− C(D)dΩ2, (19)

where α is a function of the mass generating the gravitational field (Eddington 1923; Abrams
1980; Crothers 2005; Loinger 1998). Then for (19),

Rc = Rc(D) =
√

C(D),

Rp = Rp(D) =
∫ √ √

C(D)√
C(D)− α

d
√

C(D) =
∫ √

Rc(D)
Rc(D)− α

dRc(D)

=
√

Rc(D) (Rc(D)− α) + α ln

(√
Rc(D) +

√
Rc(D)− α√

α

)
, (20)

where Rc(D) ≡ Rc (|r − r0|) = Rc(r). Clearly r is a parameter, located in Minkowski space
according to (16).

Now r = r0 ⇒ D = 0, and so by (20), Rc(D = 0) = α and Rp(D = 0) = 0. One
must ascertain the admissible form of Rc(D) subject to the conditions Rc(D = 0) = α
and Rp(D = 0) = 0 and dRc(D)/dD > 0 (Abrams 1980; Crothers 2005), along with the
requirements that Rc(D) must produce (7) from (19) at will, must yield Schwarzschild’s
(Schwarzschild 1916) original solution at will (which is not the line element (7) with r down
to zero), must produce Brillouin’s (Brillouin 1923) solution at will, must produce Droste’s
(Droste 1917) solution at will, must yield Minkowski space when α = 0, must approach
Minkowski space asymptotically, and must yield an infinite number of equivalent metrics
(Eddington 1923). The only admissible form satisfying these conditions is (Crothers 2005),

Rc = Rc(D) = (Dn + αn)
1
n ≡ (|r − r0|n + αn)

1
n = Rc(r), (21)

D > 0, r ∈ <, n ∈ <+, r 6= r0,

where r0 and n are entirely arbitrary constants.
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Choosing r0 = 0, r > 0, n = 3, gives

Rc(r) =
(
r3 + α3

) 1
3 , (22)

and putting (22) into (19) gives Schwarzschild’s original solution, defined on 0 < r < ∞.
Choosing r0 = 0, r > 0, n = 1, gives

Rc(r) = r + α, (23)

and putting (23) into (19) gives Marcel Brillouin’s solution, defined on 0 < r < ∞.
Choosing r0 = α, r > α, n = 1, gives

Rc(r) = (r − α) + α = r, (24)

and putting (24) into (19) gives line element (7), but defined on α < r < ∞, as found by
Johannes Droste in May 1916. Note that according to (24) (and in general by (21)), r is not
a radial quantity in the gravitational field, because Rc(r) = (r−α)+α = D +α is really the
radius of curvature in (7), defined for 0 < D < ∞.

Thus, assumption (c) is false.
It follows from this that the usual line element (7) is a restricted form of (19), and by (21),

with r0 = α = 2m, n = 1 gives Rc = |r − 2m|+ 2m, which is well defined on −∞ < r < ∞,
i.e. on 0 ≤ D < ∞, so that when r = 0, Rc(0) = 4m and RP (0) > 0. In the limiting case of
r = 2m the line element becomes undefined, and then Rc(2m) = 2m and Rp(2m) = 0. The
latter two relationships hold for any value of r0.

Thus, if one insists that r0 = 0 to match (8), it follows from (21) that,

Rc = (|r|n + αn)
1
n ,

and if one also insists that r > 0, then

Rc = (rn + αn)
1
n , (25)

and for n = 1,
Rc = r + α,

which is the simplest expression for Rc in (19) (Abrams 1980; Crothers 2005; Brillouin 1923).
Expression (25) has the centre of spherical symmetry of E3 located at the point r0 =

0 ∀ n ∈ <+, corresponding to the centre of spherical symmetry of M3 for Einstein’s gravita-
tional field at the point Rp(0) = 0 ∀ n ∈ <+. Then taking α = 2m it follows that Rp(0) = 0
and Rc(0) = α = 2m for all values of n.

There is no such thing as an interior solution for the line element (19) and consequently
there is no such thing as an interior solution on (7), and so there can be no black holes.

7 That the manifold cannot be extended

That the singularity at Rp(r0) ≡ 0 is insurmountable is clear by the following ratio,

lim
r→r±0

2πRc(r)
Rp(r)

= lim
r→r±0

2π (|r − r0|n + αn)
1
n

Rp(r)
= ∞,
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since Rp(r0) = 0 and Rc(r0) = α are invariant.
Hagihara (1931) has shown that all radial geodesics that do not run into the boundary at

Rc(r0) = α (i.e. that do not run into the boundary at Rp(r0) = 0) are geodesically complete.
Doughty (1981) has shown that the acceleration a of a test particle approaching the centre

of mass at Rp(r0) = 0 is given by,

a =
√
−g00

(
−g11

)
|g00,1|

2g00
.

By (19) and (21), this gives,
a =

α

2R
3
2
c

√
Rc(r)− α

.

Then clearly as r → r±0 , a →∞, independently of the value of r0.
J. Smoller and B. Temple (1998) have shown that the Oppenheimer-Volkoff equations do

not permit gravitational collapse to form a black hole and that the alleged interior of the
Schwarzschild spacetime (i.e. 0 ≤ Rc(r) ≤ α) is therefore disconnected from Schwarzschild
spacetime and so does not form part of the solution space.

N. Stavroulakis (1974; 1997; 2002; 2006) has shown that an object cannot undergo grav-
itational collapse into a singularity, or to form a black hole.

Suppose 0 ≤
√

C(D(r)) < α. Then (19) becomes

ds2 = −
(

α√
C
− 1
)

dt2 +
(

α√
C
− 1
)−1

d
√

C
2
− C(dθ2 + sin2 θdϕ2),

which shows that there is an interchange of time and length. To amplify this set r = t̄ and
t = r̄. Then

ds2 =
(

α√
C
− 1
)−1

Ċ2

4C
dt̄2 −

(
α√
C
− 1
)

dr̄2 − C(dθ2 + sin2 θdϕ2),

where C = C(t̄) and the dot denotes d/dt̄. This is a time dependent metric and therefore
bears no relation to the problem of a static gravitational field.

Thus, the Schwarzschild manifold described by (19) with (21) (and hence (7)) cannot be
extended.

8 That the Riemann tensor scalar curvature invariant is everywhere
finite

The Riemann tensor scalar curvature invariant (the Kretschmann scalar) is given by f =
RµνρσRµνρσ. In the general case of (19) with (21) this is

f =
12α2

R6
c(r)

=
12α2

(|r − r0|n + αn)
6
n

.

A routine attempt to justify the standard assumptions on (7) is the a posteriori claim that
the Kretschmann scalar must be unbounded at a singularity (Misner et al. 1973; Kruskal
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1960). Nobody has ever offered a proof that General Relativity necessarily requires this.
That this additional ad hoc assumption is false is clear from the following ratio,

f(r0) =
12α2

(|r0 − r0|n + αn)
6
n

=
12
α4

∀ r0.

In addition,

lim
r→±∞

12α2

(|r − r0|n + αn)
6
n

= 0,

and so the Kretschmann scalar is everywhere finite.

9 That the Gaussian curvature is everywhere finite

The Gaussian curvature K of (19) is,

K = K(Rc(r)) =
1

R2
c(r)

,

where Rc(r) is given by (21). Then,

K(r0) =
1
α2

∀ r0,

and
lim

r→±∞
K(r) = 0,

and so the Gaussian curvature is everywhere finite.
Furthermore,

lim
α→0

1
α2

= ∞,

since when α = 0 there is no gravitational field and empty Minkowski space is recovered,
wherein Rp and Rc are identical and 0 ≤ Rp < ∞. A centre of spherical symmetry in
Minkowski space has an infinite Gaussian curvature because Minkowski space is pseudo-
Efcleethean.

10 Translation of the centre of symmetry

The usual interpretations confound the location of the centre of spherical symmetry of the
gravitational field with the origin of a coordinate system associated with the parameter
r whose corresponding centre of spherical symmetry is not at its origin of coordinates. In
Efcleethean 3-space the equation of a sphere of radius D and centre C located at the extremity
of the fixed vector ~r0, may be written

(~r(u)−~r0) • (~r(u)−~r0) = D2. (26)

where u is some parameter upon which ~r depends. The centre of the sphere is not at the
origin of the coordinate system unless ~r0 = ~0. The usual interpretations treat the origin of the
parametric coordinate system as the centre of a non-Efcleethean sphere (for the gravitational
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field) when the centre of the said sphere is not in fact located at the origin of the parametric
coordinate system or in the gravitational field. The centre of spherical symmetry of the source
of the gravitational field is actually a centre of mass and as such is not a physical object.
The black hole results from the construction of a completely different and irrelevant manifold,
with the claim that the singularity at r = α on (7) is a “coordinate” singularity, and the claim
that the origin of the parametric coordinate system at r = 0 is the “true” singularity for
the gravitational field given by (7), in the belief that the origin of the parametric coordinate
system is the location of the centre of spherical symmetry for Einstein’s gravitational field.
The inadmissibility of this usual conception, from which the black hole is actually obtained,
can be readily seen by claiming that the “true” centre of the sphere described by (26) is not
at the extremity of the fixed non-zero vector ~r0, but at the origin of the coordinate system
to which the vectors are referred, and then construct a “transformation of coordinates”, in
the fashion of the Kruskal-Szekeres procedure, that actually retains the centre of the sphere
at the extremity of the fixed non-zero vector ~r0, but interprets the “centre” of the sphere to
be at the origin of coordinates, so that its actual centre, the centre of mass, is a “removable”
coordinate artifact.

Note that if ~r(u) and ~r0 are collinear, then the vector notation can be dropped, whereupon
equation (26) takes the scalar form

(r(u)− r0)(r(u)− r0) = D2,

where D is now more readily seen to be precisely that quantity appearing in expressions (18)
to (21), being the parametric distance |r(u) − r0| between the parametric points r(u) and
r0 on the real line (the radial line in Minkowski space that passes through the origin of the
coordinate system and the points r(u) and r0 on that radial line), where r0 is the location
of the centre of symmetry in Minkowski space corresponding to the centre of symmetry
Rp(r0) = 0 in the gravitational field.

11 Some additional general comments

The infinite acceleration at Rp(r0) = 0 (i.e. where the radius of curvature Rc(r0) = α) is not
physical. Also, nobody ever takes the centre of mass in Newton’s theory as a physical object.
It is not a physical object in Einstein’s theory either. The fact that the usual line-element
is a solution to Rµν = 0 (µ, ν = 0, 1, 2, 3) is a clear statement that the mass comprising the
source is taken to be a centre of mass, just as in Newton’s theory of gravitation. There is
no treatment or consideration of the distribution of the mass of the source of the field, so
solutions to Rµν = 0 cannot be taken to have any meaning at the centre of mass (just as
is the case in Newtonian gravitation). They only apply where the distribution of the mass
and energy of the source can be ignored, that is, when considering the region exterior to the
source, and hence of the source as a centre of mass (the mass concentrated at the centre of
spherical symmetry).

It arises in the case of the alleged black holes the curious situation that there is an
infinite acceleration where, according to the proponents of the black hole, there is no matter,
and another infinite acceleration where the alleged physical singularity is located, which
is supposed to be an infinitely dense “point-mass” (see section 6 herein). In any event,
point-masses are physically meaningless, they are only centres of mass, and as such are
mathematical artifices, not real objects.
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Outside the source of a massive object, one has a solution for Rµν = 0. But inside the
source, Rµν − 1

2gµνR = κTµν , where the energy-momentum tensor Tµν is not zero and κ
is a non-zero constant. The real issue here is how to determine the tensor Tµν . In the
case of a star, nobody knows what to write for Tµν , and for the interaction of two bodies
this seems impossible. However, Schwarzschild, realising this fact, addressed, as a matter
of mathematical tractability, the idealised situation for a homogeneous and incompressible
fluid (it is interesting that P-M. L. Robitaille (2006; 2007) has recently and independently
proposed a stellar model in terms of an incompressible fluid, based upon other considerations).
Schwarzschild could then easily write an expression for Tµν . His solution (Schwarzschild
1916) and the generalisation of his solution (Crothers 2005), reveal some compelling results.
First, there is no singularity anywhere, as to be expected, since the field outside the source
described by Rµν = 0 does not apply to the interior of the source of the field. This is
precisely the same qualitative feature of Newton’s gravitation. Outside Newton’s gravitating
body, the field is described in relation to a centre of mass, but on approaching the source,
the field expression gives way, at the surface, to a different description of the gravitational
field, for the interior of the source. This is precisely the situation in Schwarzschild’s case
for the ideal fluid. Furthermore, Schwarzschild has shown that the constant that appears
in his “mass-point” solution is not determined by a far field comparison to the Newtonian
potential, but is in fact determined by the solution for the interior of the source of the field.
Thus, the usual claim that the constant appearing in the “point-mass” solution is 2GM/c2,
is incorrect. Schwarzschild himself did not ever make such a claim, and rightly so. The
proponents of the black hole obtain their constant by comparison to the Newtonian potential
in the far field. But in Newton’s theory, gravitational potential is conceived of in terms of
two masses interacting, because Newton’s gravitational potential is conceived of as the work
per unit mass in the gravitational field. This concept makes no sense without the possibility
of arbitrary introduction of a mass into the gravitational field of some other mass. Indeed,
Newton’s force of gravitation is defined in terms of two interacting masses to begin with. This
is not the case in Einstein’s theory. One cannot rightly get Newton’s potential from a solution
to Rµν = 0 because Rµν = 0 is a clear statement that there is no matter or energy in the
Universe outside the source of the gravitational field, and so a mass cannot, in principle, be
arbitrarily inserted into the gravitational field. Thus, one cannot get a far field Newtonian
approximation to Einstein’s gravitational field in the way claimed by the relativists. One
cannot get a far field Newtonian potential for Schwarzschild’s ideal fluid solution either,
because outside the source the field is described by Rµν = 0, but the constant appearing in
the line element for Rµν = 0 is determined in full by the distribution of matter and energy
in the source, from the line-element for that distribution, and there is no matter anywhere
in the Universe outside the source of the gravitational field (and no possibility of introducing
any matter or energy into that field, owing to the condition Rµν = 0). The solution for
Rµν = 0 does not include the source mass at the centre of mass because it is not even in that
gravitational field (and it is not a physical object). Schwarzschild’s ideal sphere of fluid is
in the gravitational field, without singularity. That singularities in the field are inadmissible
Einstein was himself aware, and he repeatedly objected to all attempts to attach physical
meaning to a singularity in the field. According to Einstein (1967),

“A field theory is not yet completely determined by the system of field equations.
Should one admit the appearance of singularities? Should one postulate boundary
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conditions? As to the first question, it is my opinion that singularities must be
excluded. It does not seem reasonable to me to introduce into a continuum theory
points (or lines, etc.) for which the field equations do not hold. Moreover, the
introduction of singularities is equivalent to postulating boundary conditions (which
are arbitrary from the point of view of the field equations) on ‘surfaces’ which closely
surround the singularities. Without such a postulate the theory is too vague. In my
opinion the answer to the second question is that postulation of boundary conditions
is indispensable.”

Since Rµν = 0 excludes all matter and energy, one cannot derive from it a black hole and
then assert that black holes can collide or otherwise interact. A second black hole cannot be
arbitrarily introduced into the field of a black hole, described by Rµν = 0, when Rµν = 0 is
itself a statement that there is no other mass or energy in the Universe, and since the centre
of mass (i.e. the black hole singularity) is itself not even in the field described by Rµν = 0.
Thus, the concepts of black holes colliding, merging, or being components of binary systems,
are spurious, even if, for the sake of argument, black holes are predicted by General Relativity.
For the gravitational interaction of two or more bodies, one needs either a non-zero energy-
momentum tensor that describes the configuration for two or more interacting comparable
masses and a solution to the field equations for that tensor, or an existence theorem that
proves that Einstein’s field equations admit of solutions for such configurations, even if those
solutions cannot yet be found (McVittie 1978). Furthermore, one cannot simply assert, by
an analogy with Newton’s theory, that black holes can collide, merge, or be components of a
binary system (McVittie 1978).

It is also frequently claimed that the escape velocity of a black hole is that of light in
vacuo. If this is true then light could escape from the black hole. The existence of an escape
velocity does not mean that an object cannot leave the surface of another object. It only
means that it cannot escape to infinity, but will be pulled back to the host object if its initial
velocity is less than the escape velocity. But according to black hole theory, no object and
no light can even leave the black hole. That is not a statement that relates to the concept of
an escape velocity. It is also claimed that Newton’s theory predicts some kind of primitive
black hole. That too is not correct. First, the Michell-Laplace dark body does not involve
the concept of gravitational collapse or the concept of a singularity (the black hole has a
singularity that allegedly results from irresistible gravitational collapse). Second, it has an
escape velocity, namely the speed of light in vacuo (a black hole has no escape velocity).
Third, in Newton’s mechanics there is no upper limit to a speed (in Einstein’s theory there is
an upper speed limit). Fourth, there is always a class of observers that can see the Michell-
Laplace dark body: an observer merely has to be within the distance a radially moving
object can travel before being pulled back to the host body (but nothing can even leave a
black hole and so there is no class of observers that can see it, however close an observer is
to the alleged event horizon). Fifth, it is routinely claimed that the “Schwarzschild” radius
R = 2GM/c2 occurs in the case of the Michell-Laplace dark body. In the case of the Michell-
Laplace dark body R = 2GM/c2 is a true measurable radius, but in the case of Einstein’s
gravitational field it is not a radius at all, but an immeasurable radius of curvature (and a
minimum radius of curvature at that) by virtue of its relationship to the Gaussian curvature
(it is not a distance, let alone a “radial” distance, in Einstein’s gravitational field). Thus,
the Michell-Laplace dark body is not related to a black hole at all.
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In addition the solution to Rµν = 0 does not even generalise Special Relativity, because
Rµν = 0 excludes all matter and energy (the “point-mass” source is not in the field). But
Special Relativity permits the presence of arbitrarily large masses and energies (but not
infinitely large). Thus, the solutions to Rµν = 0 are not generalisations of the dynamical
system of Special Relativity, but are only generalisations of a geometry, namely, of Minkowski
space. All motion in the field described by solutions to Rµν = 0 is kinematic in nature. It is
incorrect to conceive of moving points in that system of kinematics as photons or as massive
particles, howsoever small or large, because Rµν = 0 excludes all such matter and energy. The
idea of photons in the field described by Rµν = 0 is inadmissible, and is directly related to a
misinterpretation of the Special Relativistic upper limiting speed c, in vacuo. This is merely
an upper speed limit for the motion of points in relation to solutions to Rµν = 0, nothing
more. One cannot associate that speed limit with a photon in the solutions to Rµν = 0,
since photons (being energy carriers) cannot exist in those gravitational fields by the very
statement Rµν = 0. The presence of the upper speed limit c is taken by the relativists to
mean that there are photons that can have that speed, by the definition of c in relation
to Special Relativity. But that is a false concept for Rµν = 0, which only has a system of
kinematics (only a geometry) in which there is an upper speed limit called c, for the motion of
a point. Indeed, Minkowski space describes a system of kinematics wherein there is an upper
limit c to the speed of a point. Length contraction and time dilation are purely kinematic
features (geometric features) of Minkowski space, both of which result from the hypothesis
of an upper speed limit for a moving point. The dynamics of Special Relativity take place
in Minkowski space on the assumption that mass and energy can merely be inserted into
Minkowski space, in similar fashion to the assumption that mass and energy can be merely
inserted into the 3-D Efcleethean geometry (i.e. the kinematic system) of Newton’s universe,
and the assignment of the upper speed limit to the speed of light in vacuo. Furthermore,
Special Relativity forbids the existence of infinite density, yet black hole theory routinely
claims that the black hole singularity is a point containing the mass of the black hole, and
hence it must have infinite density. The black hole event horizon does not define, according to
that theory, a region throughout which the mass of the black hole is distributed (recall that
black holes are allegedly formed by an irresistible gravitational collapse into a singularity).

That it is necessary but insufficient that a line element used to model Einstein’s static
vacuum gravitational field must satisfy the field equations Rµν = 0 and be asymptotically
Minkowski, is clearly illustrated by the following counter-examples. Consider the line element

ds2 =
(

1− α

r − α

)
dt2 −

(
1− α

r − α

)−1

dr2 − (r − α)2(dθ2 + sin2 θdϕ2). (27)

This line element satisfies Rµν = 0 and is asymptotically Minkowski, which can be easily
verified. Neglecting the intrinsic geometry of the line element and instead applying the
usual method of “inspection”, it is apparent, in accordance with the usual interpretation of
expression (7), that it is singular at r = 2α and at r = α. However, at r = 2α, g00 = 0
and at r = α, g00 = −∞, so it seems that there is an “event horizon” with a “Schwarzschild
radius” r = 2α and a “singularity” with a “radius” of r = α. In addition, the line element
seems to be well-defined at r = 0 — nothing remarkable occurs at r = 0. Alternatively, from
another perspective, it seems to have two event horizons and no singularity, “assuming” as
usual that r can go down to zero.
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Now consider the line element

ds2 =
(

1 +
α

r + α

)
dt2 −

(
1 +

α

r + α

)−1

dr2 − (r + α)2(dθ2 + sin2 θdϕ2). (28)

This line element satisfies Rµν = 0 and is asymptotically Minkowski, which can be easily
verified. Neglecting the intrinsic geometry of the line element and instead applying the
usual method of “inspection”, it is apparent, in accordance with the usual interpretation of
expression (7), that it is singular nowhere, “assuming” as usual that r can go down to zero.

Nonetheless, line elements (27) and (28) are in actual fact valid and equivalent models for
Einstein’s static vacuum field for the centre of mass configuration, entirely consistent with
Karl Schwarzschild’s original solution (Schwarzschild 1916). To see that this is so requires
application of expression (21) and the intrinsic geometry of the line element. Still, there are
no possibilities for the “black hole”.

12 Conclusions

Using the spherical-polar coordinates, the general solution to Rµν = 0 is (19) with (21),
which is well-defined on

−∞ < r < ∞, r 6= r0,

where r0 is entirely arbitrary, and corresponds to

0 < Rp(r) < ∞, α < Rc(r) < ∞,

for the gravitational field. The only singularity that is possible occurs at g00 = 0. It is
impossible to get g11 = 0 because there is no value of the parameter r by which this can be
attained. No interior exists in relation to (19) with (21), which contain the usual metric (7)
as a particular case, and there are no curvature-type singularities in Einstein’s gravitational
field.

The radius of curvature Rc(r), given by expression (21), does not in general determine
the radial geodesic distance to the centre of spherical symmetry of Einstein’s gravitational
field and is only to be interpreted in relation to the Gaussian curvature by the equation
K = 1/R2

c(r). The radial geodesic distance from the point at the centre of spherical symmetry
to the spherical geodesic surface with Gaussian curvature K = 1/R2

c(r) is given by the proper
radius, Rp(Rc(r)). The centre of spherical symmetry in the gravitational field is invariantly
located at the point Rp(r0) = 0.

Expression (19) with (21) (and hence (7)) describes only a centre of mass located at
Rp(r0) = 0 in the gravitational field, ∀ r0. As such it does not take into account the
distribution of matter and energy in a gravitating body, since α(M) is indeterminable in
this limited situation. One cannot generally just utilise a potential function in comparison
with the Newtonian potential to determine α by the weak field limit because α is subject to
the distribution of the matter of the source of the gravitational field. The value of α must
be calculated from a line element describing the interior of the gravitating body, satisfying
Rµν − 1

2Rgµν = κTµν 6= 0. The interior line element is necessarily different to the exterior
line element of an object such as a star. A full description of the gravitational field of a
star therefore requires two line elements (Schwarzschild 1916; Crothers 2005), not one as is
routinely assumed, and when this is done, there are no singularities anywhere. The standard
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assumption that one line element is sufficient is false. Outside a star, (19) with (21) describes
the gravitational field in relation to the centre of mass of the star, but α is nonetheless
determined by the interior metric, which, in the case of the usual treatment of (7), has gone
entirely unrecognised, so that the value of α is instead determined by a comparison with the
Newtonian potential in a weak field limit.

Black holes are not predicted by General Relativity. The Kruskal-Szekeres coordinates do
not describe a coordinate patch that covers a part of the gravitational manifold that is not
otherwise covered - they describe a completely different pseudo-Riemannian manifold that
has nothing to do with Einstein’s gravitational field (Abrams 1980; Loinger 2002; Crothers
2006). The manifold of Kruskal-Szekeres is not contained in the fundamental one-to-one
correspondence between the E3 of Minkowski space and the M3 of Einstein’s gravitational
field, and is therefore a spurious augmentation.

It follows in similar fashion that expansion of the Universe and the Big Bang cosmology
are inconsistent with General Relativity, as is easily demonstrated (Crothers 2005; Crothers
2007; Crothers 2007).
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