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Concerning radii in Einstein’s gravitational field
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Abstract. - It is proved herein that the quantity ‘r’ appearing in the so-called “Schwarzschild
solution” is neither a distance nor a geodesic radius but is in fact the radius of Gaussian curvature.
The radius of Gaussian curvature does not determine the geodesic radial distance (the proper
radius) from the arbitrary point at the centre of spherical symmetry of the Schwarzschild manifold.
It does not directly determine any distance at all in the Schwarzschiuld manifold.

Introduction. – In the usual interpretation of
Hilbert’s [1–3] “Schwarzschild’s solution”, the quantity r
therein has never been properly identified. It has been var-
iously and vaguely called “the radius” of a sphere [4,5], the
“coordinate radius” [6], the “radial coordinate” [7, 8], the
“radial space coordinate” [9], the “radius of a 2-sphere”
[10], the “areal radius” [6, 11], the “reduced circumfer-
ence” [12], and even a “a gauge choice: it defines the co-
ordinate r” [13]. In the particular case of r= 2GM/c2

it is invariably referred to as the “Schwarzschild radius”
or the “gravitational radius”. However, the irrefutable
geometrical fact is that r, in Hilbert’s version of the
Schwarzschild/Droste line-element, is the radius of Gaus-
sian curvature [14–17], and as such it does not in fact
determine the geodesic radial distance from the centre of
spherical symmetry located at an arbitrary point in the
related metric manifold. Indeed, it does not in fact deter-
mine any distance at all in the Schwarzschild manifold. It
is the radius of Gaussian curvature merely by virtue of its
formal geometric relationship to the Gaussian curvature of
the spherically symmetric geodesic surface in the spatial
section.

It must also be emphasized that a geometry is com-
pletely determined by the form of its line-element [18].

Gaussian Curvature. – Recall that Hilbert’s version
of the “Schwarzschild” solution is (using c=G= 1),

ds2 =
(

1− 2m
r

)
dt2 −

(
1− 2m

r

)−1

dr2−

−r2
(
dθ2 + sin2 θdϕ2

)
, (1)

wherein r can, by assumption (i.e. without any proof),
in some way or another, go down to zero, and m is al-
legedly the mass of the source of the gravitational field.
Schwarzschild’s [19] actual solution, for comparision, is

ds2 =
(

1− α

R

)
dt2 −

(
1− α

R

)−1

dR2−

−R2
(
dθ2 + sin2 θdϕ2

)
, (2)

R = R(r) =
(
r3 + α3

) 1
3 , 0 ≤ r <∞,

α = const.

Note that the metric tensor of (2) is singular only when
r= 0 (in which case the metric does not actually apply),
and that the constant α is indeterminable (Schwarzschild
did not assign any value to the constant α for this reason).

For a 2-D spherically symmetric geometric surface [20]
determined by

ds2 = R2
c(dθ

2 + sin2 θdϕ2), (3)

Rc = Rc(r),

the Riemannian curvature (which depends upon both po-
sition and direction) reduces to the Gaussian curvature K
(which depends only on position), given by [14,21–24]

K =
R1212

g
,

where Rijkm = ginR
n
.jkm is the Riemann tensor of the first

kind and g= g11g22 = gθθgϕϕ (because the metric tensor
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is diagonal). Recall that

R1
.212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk22Γ1

k1 − Γk21Γ1
k2,

Γααβ = Γαβα =
∂

∂xβ

(
1
2

ln |gαα |
)
,

Γαββ = − 1
2gαα

∂gββ
∂xα

, (α 6= β),

and all other Γαβγ vanish. In the above, k, α, β= 1, 2,
x1 = θ and x2 =φ, of course. Straightforward calculation
gives for expression (3),

K =
1
R2
c

,

so that Rc is the inverse square root of the Gaussian cur-
vature, i. e. the radius of Gaussian curvature, and so r in
Hilbert’s “Schwarzschild’s solution” is the radius of Gaus-
sian curvature. The geodesic (i.e. proper) radius, Rp, of
a spatial section of Schwarzschild’s solution (2), up to a
constant of integration, is given by

Rp =
∫

dR(r)√
1− α

R(r)

, (4)

and for Hilbert’s “Schwarzschild’s solution” (1), by

Rp =
∫

dr√
1− 2m

r

.

Thus the proper radius and the radius of Gaussian curva-
ture are not the same. The radius of Gaussian curvature
does not determine the geodesic radial distance from the
arbitrary point at the centre of spherical symmetry of the
metric manifold. It is a “radius” only in the sense of it
being the inverse square root of the Gaussian curvature.
A detailed development of the foregoing, from first princi-
ples, is given elsewhere [14,15].

Note that in (2), if α= 0 Minkowski space is recovered:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

0 ≤ r <∞.

In this case the radius of Gaussian curvature is r and the
proper radius is

Rp =
∫ r

0

dr = r,

so that the radius of Gaussian curvature and the proper
radius are identical. It is for this reason that in the space-
time of Minkowski the radius of Gaussian curvature can be
substituted for the proper radius (i.e. the geodesic radius).
However, in the case of a (pseudo-) Riemannian manifold,
such as (1) and (2) above, only the great circumference
and surface area can be directly determined via the radius
of Gaussian curvature. Distances from the arbitrary point

at the centre of spherical symmetry to a geodesic spheri-
cal surface in a Riemannian metric manifold can only be
determined via the proper radius, except for particular
points (if any) in the manifold where the radius of Gaus-
sian curvature and the geodesic radius are identical, and
volumes by a triple integral involving a function of the ra-
dius of Gaussian curvature. In the case of Schwarzschild’s
solution (2) (and hence also for (1)), the radius of Gaus-
sian curvature, Rc =R(r), and the proper radius, Rp, are
identical only at Rc ≈ 1.467α. When the radius of Gaus-
sian curvature, Rc, is greater than ≈ 1.467α, Rp > Rc ,
and when the radius of Gaussian curvature is less than
≈ 1.467α, Rp < Rc.

The upper and lower bounds on the Gaussian curva-
ture (and hence on the radius of Gaussian curvature) are
not arbitrary, but are determined by the proper radius in
accordance with the intrinsic geometric structure of the
line-element (which completely determines the geometry),
manifest in the integral (4). Thus, one cannot merely as-
sume that the radius of Gaussian curvature for (1) and (2)
can vary from zero to infinity. Indeed, in the case of (2)
(and hence also of (1)), as Rp varies from zero to infinity,
the Gaussian curvature varies from 1/α2 to zero and so
the radius of Gaussian curvature correspondingly varies
from α to infinity, as easily determined by evaluation of
the constant of integration associated with the indefinite
integral (4). Moreover, in the same way, it is easily shown
that expressions (1) and (2) can be generalised17 to all real
values, but one, of the variable r, so that both (1) and (2)
are particular cases of the general radius of Gaussian cur-
vature, given by

Rc = Rc(r) =
(∣∣r − r0∣∣n + αn

) 1
n

, (5)

r ∈ <, n ∈ <+, r 6= r0,

wherein r0 and n are entirely arbitrary real constants.
Choosing n= 3, r0 = 0 and r > r0 yields the solution
(2) actually obtained by Schwarzschild. Choosing n= 1,
r0 =α and r > r0 yields line-element (1) as determined
by Johannes Droste25 in May 1916, independently of
Schwarzschild. Choosing n= 1, r0 =α and r < r0 gives
Rc = 2α− r, with line-element

ds2 =
(

1− α

2α− r

)
dt2 −

(
1− α

2α− r

)−1

dr2−

−(2α− r)2
(
dθ2 + sin2 θdϕ2

)
.

Using relations (5) directly, all real values of r 6= r0 are
permitted. In any case, however, the related line-element
is singular only at the arbitrary parametric point r= r0 on
the real line (or half real line, as the case may be), which
is the only parametric point on the real line (or half real
line, as the case may be) at which the line-element fails
(at Rp(r0) = 0 ∀ r0 ∀ n). Indeed, substituting (5) for R(r)
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in (4), and evaluating the constant of integration gives

Rp =
√
Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α√
α

)
,

where Rc =Rc(r) is given by (5).
Note that in the Standard Model interpretation of (1),

only g00 and g11 are modified by the presence of the con-
stant m. However, according to (2) and (5) all the compo-
nents of the metric tensor are modified by the constant α,
and since (1) is a particular case of (5), all the components
of the metric tensor of (1) are modified by the constant α
as well.

The Kruskal-Szekeres coordinates do not take account
of the Gaussian curvature of the spherically symmetric
geodesic surface in the spatial section of the Schwarzschild
manifold. These coordinates thereby violate the geometric
form of the line-element, producing a completely separate
pseudo-Riemannain manifold that does not form part of
the solution space of the Schwarzschild manifold [26], and
are consequently invalid. The concept of the Black Hole
is therefore invalid.
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