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We consider a new four-dimensional formulation of semi-classical quantum general
relativity in which the classical space-time manifold, whose intrinsic geometric
properties give rise to the effects of gravitation, is allowed to evolve microscopically by
means of a conformal function which is assumed to depend on some quantum mechanical
wave function. As a result, the theory presented here produces a unified field theory of
gravitation and (microscopic) electromagnetism in a somewhat simple, effective manner.
In the process, it is seen that electromagnetism is actually an emergent quantum field
originating in some kind of stochastic smooth extension (evolution) of the gravitational
field in the general theory of relativity.

1. Introduction

We shall show that the introduction of an external parameter, the Planck displacement
vector field, that deforms ("maps") the standard general relativistic space-time S, into an
evolved space-time S, yields a theory of general relativity whose space-time structure

obeys the semi-classical quantum mechanical law of evolution. In addition, an "already
quantized" electromagnetic field arises from our schematic evolution process and

automatically appears as an intrinsic geometric object in the space-time S, . In the
process of evolution, it is seen that from the point of view of the classical space-time S,
alone, an external deformation takes place, since, by definition, the Planck constant does
not belong to its structure. In other words, relative to S,, the Planck constant is an

external parameter. However from the global point of view of the universal (enveloping)
evolution space M,, the Planck constant is intrinsic to itself and therefore defines the

dynamical evolution of S, into S, . In this sense, a point in M, is not strictly single-
valued. Rather, a point in M, has a "dimension" depending on the Planck length.
Therefore, it belongs to both the space-time S, and the space-time S, .

2. Construction of a Four-Dimensional Metric-Compatible Evolution M anifold M,

We first consider the notion of a four-dimensional, universal enveloping manifold M,

with coordinates x* endowed with a microscopic deformation structure represented by



an exterior vector field ¢(x”) which maps the enveloped space-time manifold S, M, at
a certain initial point P, onto a new enveloped space-time manifold S, e M, at a certain

point P, through the diffeomorphism
X (R)=x"(R)+1&"

Gh

where [ = [— = 107" ¢m is the Planck length expressed in terms of the Newtonian
c

gravitational constant G, the Dirac-Planck constant 7, and the speed of light in vacuum
¢, in such a way that

¢ =15

; uo_
lim ¢ =0

From its diffeomorphic structure, we therefore see that M, is a kind of strain space. In
general, the space-time S, evolves from the space-time S, through the non-linear
mapping

P(g): S, >,
Note that the exterior vector field ¢ can be expressed as ¢ =¢" h, = é~ g, (the

Einstein’s summation convention employed throughout this work) where %, and g, are

the sets of basis vectors of the space-times S, and §,, respectively. (Likewise for £.)
We remark that S, and S, are both endowed with metricity through their immersion in
M ,, which we shall now call the evolution manifold. Then, the two sets of basis vectors
are related by

g, =60 +1v, &),
or, alternatively, by

g,=nh, +I(Vﬂgv)gv
where &, are the components of the Kronecker delta.

At this point, we have defined the two covariant derivatives with respect to the
connections @ of S, and I' of S, as follows:
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and

VB =0, By + Ty Bl +T) Bir-+ .. =T Bl =T B — ..
for arbitrary tensor fields 4 and B, respectively. Here 0, = 6/ O0x", as usual. The two
covariant derivatives above are equal only in the limit 2 — 0.

Furthermore, we assume that the connections @ and I' are generally asymmetric, and
can be decomposed into their symmetric and anti-symmetric parts, respectively, as

o', =(n*,0,h

v u

A 2
)— Oyy) + Q)
and
A A A A
L., = (g .0, g#) =T + T

Here, by (a,b) we shall mean the inner product between the arbitrary vector fields a and
b.

Furthermore, by direct calculation we obtain the relation
0,2, =0, +1(v, &) ez +10,(v, &),
Hence, setting

Fi =0l +1(v, &)l +0,(v,¢%)
—wt 1V, &)l +0,0,8 +£7 0,0, +(0,£7)?,)
we may simply write
0,8,="F, h,
Meanwhile, we also have the following inverse relation:

hﬂ = (5/‘; - Iv/z Cj‘?V)gv

Hence we obtain



8,2,=0l +1(V, &)t +10,0, " +1&° 0, 0, +1(0,£°) @,
~l03, V, & -1V, cf”)a)pv v, & -10,0,£)V, &
—lfp( 0o, )V, EF 100, &) 0, ¥, E )gz

Using the relation 0, g, = F’1 g, (similarly, 0, h, = a)/fv h,), we obtain the relation
between the two connections I' and @ as follows:

1, =, +1(V, & )0l +8,0,& +&° 0,0l +(0,£%) 0, —@F, V, EF
( é:p) V é? (av 6ﬂ§0)vaér -¢”7 (avwgﬂ)vagl
_(av é:p)a)p/t 6 é? )

which is a general non-linear relation in the components of the exterior displacement
field &. We may now write

A A A
Fw = FW + GW

where, recalling the previous definition of F, , it can be rewritten as

/tV’
F., =, +l((8v w;, + o, a)jv)g” +0,0,¢ +(8# g“’)wiv +(6V 5")(0;)
and where
G =1, +1((v,&7)as, +0,0,87 +&7 0,05 +(0,£7)02,)V, E

At this point, the intrinsic curvature tensors of the space-times S, and S, are respectively
given by
o _ o _ o o A o A o
K —Z(h ,a[ﬂé’v]hp)—aﬂa)pv—8va)pﬂ+a)pv w7, -0, OF

puv

and

R, =2(g°.0,0,¢g,)=0,T; -0,I +T Iy, ~T/ T3,

v Hopv

We may also define the following quantities built from the connections ®;, and I';,:

o _ A o A o
Dpﬂv 8# a)p + 0 a)pﬂ + o), 0, + 0, 0

and



E°, =0,T5, +0,T7 +1“’I ry, +I” re

u=opv pu

from which we may define two additional “curvatures” X and P by

o o o A o
(K +D )=6ﬂa)pv+a)pv 3,

puv puv

Xiwv = (ha’aﬂ av hp):
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and
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o o 1 o o o A o
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such that K =2 X7 jand RY,, =2 P

pluv]:

Now, we see that

F(fw):a)&v)+l(% LLET a0, + (0, )a)jv+(8vcf“)a)jﬂ)

and

1 -
a{,uv] + K ouv é:

In addition, we also have

G, )_1( o, )+1[; 0 £ 40,0,87 +(0,8) 08, +(5V§”)w;’,,nif”

and

|
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Now, the metric tensor g of the space-time S, and the metric tensor / of the space-time
S, arerespectively given by

h, =n,.h,)

uv

and

Euw = (g/_z7gv)



where the following relations hold:
h,, h" =6,

g/w gvo‘ :5;

In general, the two conditions %, g” # o, and g,, h" # &, must be fulfilled unless

[ =0 (in the limit 72 — 0). Furthermore, we have the metricity conditions

V,h, =0

A uv

and
vl g,uv = 0
However, note that in general, V, h, #0and V, g, #0.

Hence, it is straightforward to see that in general, the metric tensor g is related to the
metric tensor 4 by

gyv = hyv + 2 lv(y gv) + lzvy 61 Vv gﬂ,
which in the linear approximation reads

gyv = h;tv + 2 lv(,u é:v)

The formal structure of our underlying geometric framework clearly implies that the
same structure holds in #» dimensions as well.

3. The Conformal Theory

We are now in the position to extract a physical theory of quantum gravity from the
geometric framework in the preceding section by considering the following linear
conformal mapping:

g, = e’ h u
where the continuously differentiable scalar function (o(x”) is the generator of the
quantum displacement field in the evolution space M, and therefore connects the two
space-times S, and S, .



Now, for reasons that will be apparent soon, we shall define the generator ¢ in terms of

the canonical quantum mechanical wave function ¥ (x”) as

(0211’1(1+M§//)%

where

Here m, is the rest mass of the electron. Note that the sign * signifies the signature of
the space-time used.

Now, we also have the following relations:

g" —e? B
hﬂ =e? g,
h/l :efﬂ g#

as well as the conformal transformation

g =¢"h,
Hence

gﬂV — e—Zw Wt

We immediately see that

vo _ 2¢ v
8w W =e" 94,

vo _  -2¢ v
h, g =e"0,

At this point, we see that the world-line of the space-time §,, s = I g, dx" dx"

connected to that of the space-time S|, o = j \h,, dx"dx” ,through



ds =e*? do
Furthermore, from the relation
g, =60 +1v, &), =e h,
we obtain the important relation

IV, &, =(e" —1)h

uv
which means that

D, =1V, & =D

v Vi

1.e., the quantum displacement gradient tensor field @ is symmetric. Hence we may
simply call @ the quantum strain tensor field. We also see that the components of the

quantum displacement field, ¢* =[&#, can now be described by the wave function
as

1€,
_ Yig axr
l// - WO + lj.¢lu X
for an arbitrary initial value y, (which, most conveniently, can be chosen to be 0).

Furthermore, we note that the integrability condition ® ,, = @, means that the space-
time S, must now possess a symmetric, linear connection, i.e.,

|
0t = o :Eh‘ @, h, -0, h, +0,h,)

uv vu

A
which are just the Christoffel symbols {

in the space-time §,. Hence @ is now none
uv

other than the symmetric Levi-Civita (Riemannian) connection. Using the metricity

condition 0, g, =T, +T,,,ie,

al g,uv = M h#v aﬂ, l// + (1 + Ml//) (a),uvﬂ + a)v,ul)



we obtain the mixed form

(l +MW)_1 (ai g,uv - a,u gvﬂ +av glﬂ)

a)ﬁyv =

N | =

1 )
_EM(1+M1//)1 (hy 8,9 —h, 0,v +h,, d,v)
1€,

o' =

uv

(+My)' h* (0,g,, -0,8,+0,2,)

N | =

1 ]
—EM(1+M1//)1(53 o, p+ 8 0,y —h, "3,y

It may be noted that we have used the customary convention in which I',,, =g, I'/,

_ o
and @,,, —hip .

1
Now we shall see why we have made the particular choice ¢ = In (1 + M l//)E . In order to
explicitly show that it now possess a stochastic part, let us rewrite the components of the
metric tensor of the space-time S, as

g, =+My)h,

Combining this relation with the linearized relation g, =h, +21V ¢, and
contracting the resulting relation, we obtain

IDy =2(e -1)=2My
where we have defined the differential operator D* = h* V .V, such that

D y=hn" 0,0,y -0l 0,y )

2
Expressing M explicitly, we obtain D* y = F (m;l cj v, le.,

o[ Jy o

which is precisely the Klein-Gordon equation in the presence of gravitation.




We may note that, had we combined the relation g, = (1 + M 1//) h,,, with the fully non-
linear relation g,, =h,, +21V &, +1°V E*V &, we would have obtained the

following non-linear Klein-Gordon equation:
myc)
[Dz + [#j ) y=00 h (V) (V,V, )

Now, from the general relation between the connections I' and @ given in Section 2, we
obtain the following important relation:

1 v £ o
Y, = - 167 -1V, E*)K?,, &

uv

which not only connects the torsion of the space-time S, with the curvature of the space-
time S|, but also describes the torsion as an intrinsic (geometric) quantum phenomenon.

el

are now the components of the Riemann-Christoffel curvature tensor describing the
curvature of space-time in the standard general relativity theory.

Furthermore, using the relation between the two sets of basis vectors g, and £, , it is

easy to see that the connection I' is semi-symmetric as
A A A
r, =, + 5# 0, ¢
or, written somewhat more explicitly,

r =%h”ﬂ (0,h, —o,h, +0,h )+%5j 0, (In(t+ My))

v v "You u " vo

We immediately obtain
A A 1 A A
rt, = o, +E(5ﬂ 0,p+05!8,9)

uv)

and
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M =5 65 0,057 2,0)

Additionally, using the relation

!, =, =0, (inJdet(r))= 0, (In(e* Jdet(g)) = o, (indet(g)) - 0, »

we may now define two semi-vectors by the following contractions:

r, =T =2, (nJdet(n))+ 40, ¢
A, =T, =0, (lnw/det(h))+ 0,9

or, written somewhat more explicitly,

r, =, (Inydet(r) + In(1 + My ))
A, =0, (indet(n) + n i+ My )

We now define the forsion vector by

T = 1—‘[Tf/t] = a/t @

N | W

In other words,

M

r, =25
“ 41+ My) d

Furthermore, it is easy to show that the curvature tensors of our two space-times S, and
S, are now identical:

o _ o
R puv Kp/lv

which is another way of saying that the conformal transformation g, = e” h, leaves the

curvature tensor of the space-time S, invariant. As an immediate consequence, we obtain
the ordinary expression

R ©,0,h, +0,0,h, -08,0,h,-0,0,h,)+h, (@, o - o)

popyv = E p Tou v “o pu u - ptov ou ov

Hence the following cyclic symmetry in Riemannian geometry:

11



R + R + R =0

pouv puUVe pvou

is preserved in the presence of torsion. In addition, besides the obvious symmetry
R =—R we also have the symmetry

pouv povi >

R,., =-R

pouv apuv

which is due to the metricity condition of the space-times S, and S, . This implies the
vanishing of the so-called Homothetic curvature as

H, =R, =0

u
The Weyl tensor is given in the usual manner by

1

C =R h, R, +h, R,~h R, —h, R, )- P (,, b —h, h,)R

1
pouv pouv 5 (

where R, = R°,,, are the components of the symmetric Ricci tensor and R = R”, is the

Hov

Ricci scalar.

Now, by means of the conformal relation g, = e’” h,, we obtain the expression

Ro,=e¢>(0,0,g,+0,0,8,-0,0,8,-0,0,8, +8&, (% T, -TT,)
+0,8, -0, 8,)0,0+0,8, -0,8,)0,9¢
+(ap Eov _ao'gpv)au¢ + (arf Eou ~ apgou)av(p
+8,0,0,90+¢,0,0,0-g, 0,0,0-g,,0,0,¢
+2(g@, 0,00,0+8,, 0,00,0-g,,0,00,0—-g,, 0,90,9)
+g, (s, 0,0-150,0)80 - (04 0,0 -T2 8,0)05%)

Note that despite the fact that the curvature tensor of the space-time S, is identical to that
of the space-time S, and that both curvature tensors share common algebraic symmetries,
the Bianchi identity in .S, is notthe same as the ordinary Bianchi identity in the torsion-
free space-time . Instead, we have the following generalized Bianchi identity:

V.R.+V,R_,+V,R_ =2(7 R

pouv u T povi v "t poiu [ 7] v] poni

+ F[ZZ] R

ponu

+ r['gﬂ] R

o)

Contracting the above relation, we obtain
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v v 1 v v o oV
v, (R” -3 g’ R] =2g¢" I, R, + T, R,

Combining the two generalized Bianchi identities above with the relation
1
F[fw] =3 (é' /f o,p—6 0 W ® ) , as well as recalling the definition of the torsion vector,

and taking into account the symmetry of the Ricci tensor, we obtain

VR, +V,R_,+V,R . =2R . 0,0+R,, 0,0+R . 0 0

pouv u T povi v Tt polu

and
(1 bl
VV R'u —Eg'u R :—2 R'u —Eg'u R 8V¢

which, upon recalling the definition of the torsion vector, may be expressed as

_ 1 4 1
V|R" -~ g™ R|=-Z|R" ——g"™ R
(RS r]=- 3 (RS s,

Apart from the above generalized identities, we may also give the ordinary Bianchi
identities as

V,R.n+V,R_,+V, R _ =0

pouv pPOAL

and

v, (R”V —%h” Rj =0

4. The Electromagnetic Sector of the Conformal Theory. The Fundamental
Equations of Motion

Based on the results obtained in the preceding section, let us now take the generator ¢ as

describing the (quantum) electromagnetic field. Then, consequently, the space-time S, is
understood as being devoid of electromagnetic interaction. As we will see, in our present
theory, it is the quantum evolution of the gravitational field that gives rise to
electromagnetism. In this sense, the electromagnetic field is but an emergent quantum
phenomenon in the evolution space M.

Whereas the space-time S, is purely gravitational, the evolved space-time S, does
contain an electromagnetic field. In our present theory, for reasons that will be clear soon,

13



we shall define the electromagnetic field F'eS, M, in terms of the torsion of the space-
time S, by
2

myc -,
T u,

F, =2 -

where e is the (elementary) charge of the electron and

dx" . dx"
ds " ds

U, =8u
are the covariant components of the tangent velocity vector field satisfying u, u* =1.

We have seen that the space-time S, possesses a manifest quantum structure through its
evolution from the purely gravitational space-time S, . This means that ¢ may be defined
in terms of the fundamental Planck charge ¢ as follows:

e=Né= N, 4reg,hc

where N is a positive constant and &, is the permitivity of free space. Further

investigation shows that N = Ja where @ ' ~137 is the conventional fine structure
constant.

Let us now proceed to show that the geodesic equation of motion in the space-time S,
gives the (generalized) Lorentz equation of motion for the electron. The result of parallel-
transferring the velocity vector field # along the world-line (in the direction of motion of
the electron) yields

Du" (=
ds (

\Y, u”)uV=0

14

ie.,

where, in general,
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Recalling our expression for the components of the torsion tensor in the preceding
section, we obtain

If == g" (0,8, —0,8, +0,8.,)+ 8., 870, 0-6"0,¢

N | —

i
uv

which is completely equivalent to the previously obtained relation Fjv =w, +0 j 0, 9.

Note that

A, = % ¢ 0,2, -0,2,+0,8,)

are the Christoffel symbols in the space-time §,. These are not to be confused with the
Christoffel symbols in the space-time S, givenby @’

uv
Furthermore, we have

du*
ds

o

+A‘/’xr u” u® =2g"” F[fm] u, u

2
_ 5 M

Now, since we have set F,,
e

F[fw] u,, we obtain the equation of motion

2 du” u P o — U v
m, c + A u”u’ |=eF”" u
0 ds re

which is none other than the Lorentz equation of motion for the electron in the presence
of gravitation. Hence, it turns out that the electromagnetic field, which is non-existent in

the space-time S,, is an intrinsic geometric object in the space-time S, . In other words,

the space-time structure of S, inherently contains both gravitation and electromagnetism.

Now, we see that

2
m, c

F, = - (uy 0,¢—u, 8y(p)

In other words,

eF* u" :moc2 (u” d—(o—g”v 6v(pJ
ds

Consequently, we can rewrite the electron’s equation of motion as
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du*” d
p +A’/’Mu”ua=u”—(p— a
s

0
s g v @

We may therefore define an asymmetric fundamental tensor of the gravoelectromagnetic
manifold S, by

~ ) e
uwr = 8w T 3 £,
0
satisfying
U =0,9

It follows immediately that

(é“fld_q)_ ezFﬂ‘JuV:gwavw

ds m,c

which, when expressed in terms of the wave function v, gives the Schrodinger-like
equation

We may now proceed to show that the electromagnetic current density given by the
covariant expression

i# = —V F"
J an

is conserved in the present theory.

Let us first call the following expression for the covariant components of the
electromagnetic field tensor in terms of the covariant components of the canonical
electromagnetic four-potential A :

F,=V,4,-V, 4

u

such that eV, A4, = m,c* u, 0,9, ie.,
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myc> 0, p=¢eu" V#Av
which directly gives the equation of motion

do _ _
m,c’ 9 eut u V., A4,
ds

Hence, we obtain the following equation of state:

d _U+M =
mocz—y/:ZeMu” u" Vv, A4,
s M

Another alternative expression for the electromagnetic field tensor is given by

A
FW =8VA# —8” A, _ZF[,,V] A4,
:6VAN —8#AV + A4, aﬂ(p—A# 0, ¢

In the particular case in which the field-lines of the electromagnetic four-potential
propagate in the direction of the electron’s motion, we have

Fﬂv :A[L_ﬂzl(avuﬂ —8ﬂuv)

2
C

. L _ ’A
where A is a proportionality constant and f =xe |— . Then, we may define a
m

o

vortical velocity field, i.e., a spin field, through the vorticity tensor which is given by

@, :%(avu# —8yuv)

7]

and hence

which describes an electrically charged spinning region in the space-time continuum S, .

Furthermore, we have the following generalized identity for the electromagnetic field
tensor:
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V,F, +V,F, +V,F, =20, F, + T F,, + T, F..)
which, in the present theory, takes the particular form

V,F, +V,F,+V,F,=2(F,0,p+F,0,p+F, 0,0

Contracting, we have
V,j"=-—V, (F[‘p‘a] F"")

We therefore expect that the expression in the brackets indeed vanishes. For this purpose,
we may set

. c o
Jt = e £
. . . 1 . .
and hence, again, using the relation F[fw] =3 (5j 0, - 5f 0, gp), we immediately see
that
v s c 4 v v
V= 0,0V, F* +F* (6,0, -T(y 0, 0)
: c v
:—_]ﬂ Gﬂ(p—ﬂrﬁvl F* (3140
1e.,

V,j*=0

At this point, we may note the following: the fact that our theory employs torsion, from
which the electromagnetic field is extracted, and at the same time guarantees
electromagnetic charge conservation (in the form of the above continuity equation) in a
natural manner is a remarkable property.

Now, let us call the relation

A 1 A v g4 o
T = _51(50 ~IV, E*)RC,, &
obtained in Section 3 of this work (in which R° , = K° ). This can simply be written

as
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2 1 - 2
Ty == 1e” R, &7
1€,
"= 11WR4 P75
[wv] — E € puv & ¥

Hence, we obtain the elegant result
m,c’
- A o
F, :_I—OE e’ R, u, g” 0,y
1€,

2
T R u, g o,y

JI+My ™

or, in terms of the components of the (dimensionless) microscopic displacement field ¢,

/
HV E

2
m, c
_ 0 - A po
Fyv - I z e R yony uﬂ g ga

which further reveals how the electromagnetic field originates in the gravitational field in
the space-time S, as a quantum field. Hence, at last, we see a complete picture of the

electromagnetic field as an emergent phenomenon. This completes the long-cherished
hypothesis that the electromagnetic field itself is caused by a massive charged particle,

1.e., when m, = 0 neither gravity nor electromagnetism can exist. Finally, with this result

at hand, we obtain the following equation of motion for the electron in the gravitational
field:

du* A P u® =—]e? RPH v
7 o U u” =-le U, E,ou
Le.,
du” /
7 p 0 _ pop v
+A,u"u’ =————=R u,u 0,y

ds

JI+ My '

In addition, we note that the torsion tensor is now seen to be given by
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or, alternatively,

In other words,

| i
T :———R Vla
“ 2 1+ My w & OV

Hence, the second generalized Bianchi identity finally takes the somewhat more
transparent form

- 1
v, (R“” - R] - _ % le* (R"” R, - % R R’;j g7 oy

1€,

A (R N SR (R Y AP
2 31+ My 2

5. Final Remarks

The present theory, in its present form, is still in an elementary state of development.
However, as we have seen, the emergence of the electromagnetic field from the quantum
evolution of the gravitational field is a remarkable achievement which deserves special
attention. On another occasion, we shall expect to expound the structure of the
generalized Einstein's equation in the present theory with a generally non-conservative
energy-momentum tensor given by

oo+ © (R L, R
w TG e T B

which, like in the case of self-creation cosmology, seems to allow us to attribute the
creation and annihilation of matter directly to the scalar generator of the quantum
evolution process, and hence the wave function alone, as

= 2
v, T B oy T*" R, g 0,y #0
v
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