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ABSTRACT. The Theory of General Relativity correctly describes physical phenomena, when
observed/measured by electromagnetic radiation. Time can be defined as a property of electromagnetic
radiation.  Specifically, the propagation process required for light to travel 1cm, can be taken as a unit of
time. The behavior of electromagnetic energy propagation (including propagation velocity) depends on the
curvature of spacetime. Both gravitation and electromagnetism can be described as manifestations of
spacetime curvature. By showing the speed-of-light c to be a function of curvature, one can argue that
velocities greater than c do not violate causality. If electromagnetism is the standard of measurement &
observation, then physical phenomena manifesting in states at (or in excess of) electromagnetism states,
will appear distorted under such measurement. The principles of Einstein’s relativity theory are used to
derive a generalized relativistic concept, which is not based on electromagnetic signal behavior. Relativity
is viewed as a gauge theory, to gain further insight into fundamental cosmology, such as examining if c is
an upper bound to possible velocities.

PACS numbers:  0420, 0490

1.  Introduction
Gravitation is a manifestation of spacetime curvature. Curvature is shown by the

deviation of geodesics in a given spacetime neighborhood. Electromagnetism is also a
manifestation of spacetime curvature. Gravitation & electromagnetism respectively can be
viewed as the symmetric and asymmetric parts of the Ricci Tensor [1], [2], [7]. Obviously,
curvature is not constant throughout all of spacetime. Thus, spacetime can be viewed as
containing regions which can have curvature peculiar to that region. Information is generally
defined as electromagnetic energy which radiates/propagates at the speed-of-light (c). With this
definition, superluminal propagation could result in causality violation. However, this definition
might be specific, and not generically applicable to the basic concept of information transfer. If
this is true, issues of paradox, causality violation, etc. might be irrelevant. A reasonable postulate
is that any events/phenomena (manifesting in excess of c) would appear distorted or ambiguous if
observed via electromagnetic radiation. Further, the additional postulate that c is not a limiting
velocity, does not invalidate Special Relativity. It might, however, question Einstein’s original
interpretation of his theory.

 If one considers the above 2 postulates, one concludes that gravitation and
electromagnetism are both manifestations of spacetime curvature, and functionally equivalent. It
follows that the primary constraint on velocity (in normal spacetime) is the curvature of
spacetime. Additionally, since curvature can be different (in different areas of spacetime), it is
reasonable to consider a regional-structure of spacetime. Such a regional-structure could suggest
solution to several lingering cosmological questions.

To define a regional structure of spacetime, the concept of an orbifold is useful. The
regional structure can be analytically defined, resulting in a tensor-based description for such a
structure. Thus, such a regional structure concept is compatible with most cosmological methods
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& models (e.g. Relativity, M-Theory, methods of Minkowski, Riemann, etc.), all of which
employ tensor analysis methods. Conceptually, any region of spacetime can be defined by a
separate (i.e. different) orbifold. Such a region would consist of a set of points identified under
some discrete symmetry group. The manifold points that are so identified would be disjoint or
overlapping subsets of the manifold. The “set of points” depends on the symmetry group selected.
Thus, a given regional structure of spacetime depends analytically on the symmetry group
selected for the different regions of that spacetime. A region of spacetime is defined by a set of
points (of the general spacetime manifold) selected under a discrete symmetry group. If the “set
of points” contains fixed points, then the region is defined as an orbifold. Each (non-fixed) point
of a region can (obviously) be defined by a tensor element  ξ ij…

 k…  that is an element of the tensor
defining that region. Fixed points can also be defined in this manner.
Regions containing fixed points (i.e. orbifold singularities) are now considered. Such regions fail
to be manifolds precisely at any respective “fixed points” of said regions. One notes that such
“fixed points” might be useful in describing black holes and other cosmic discontinuities or
singularities.

If fixed points are defined as;

Singularities of an infinite curvature type, wherein the curvature of spacetime (at such a
“fixed point”) is infinite,

 Then;

Such a singularity induces (at that “fixed point”/singularity) a breakdown of General
Relativity

By defining a region collapsed around a singularity (i.e. a region containing only a “fixed point”,
or containing only a set of “fixed points”) a method of analysis might be suggested. A starting
point, to find such a method, could be the assumption that singularities are a physical reality of
spacetime. The next step is to attempt to establish an analytical framework for regional spacetime
that accommodates singularities/”fixed points”. A possible benefit of such a method (and of the
overall concept of a regional structure of spacetime) can be appreciated from the following
discussion concerning gravitation and quantum theory in a regional spacetime structure;

1.1.  Spacetime Regions  (Some possible ramifications)
If (as a brief aside) one examines a regional structure of spacetime, several factors might

follow. The regions of spacetime, if dynamic (in size and/or other properties), could account for
several phenomena (both observed and predicted). Considering the curvature parameter, if one
examines regional curvature, as the regions become smaller;

Let:
Wi   =  volume of the ith region of spacetime
 λi   =  curvature of the ith region of spacetime
       =   ƒ(Wi 

, … )

     ∂λi ⁄∂Wi = ∂ƒ(Wi 
, … ) dqi  ⁄∂Wi  ,

                                                        where qi is a generalized coordinate
Then:

limit ƒ(Wi 
, … ) =  limit λi  ≈  Ҝ

Wi  → 0                      Wi  → 0
Where Ҝ is an approximation of curvature/gravity in a quantum
framework?
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It is interesting to note that, where Wi approaches the Planck-Scale (i.e. micro-regions), neither
Relativity nor Quantum Theory accurately predicts the behavior of matter. Micro-regions could
be used to describe quantum behavior/properties of curvature. As region size “theoretically”
approaches zero, regional size encounters the Planck-Scale. Below the Planck-Scale, present
knowledge prevents accurate prediction of behavior. Descriptions of curvature/gravity (under a
regional structure) might therefore offer a way to incorporate a quantum framework that includes
gravity, when micro-regions are considered.

The regions containing “fixed points” can be analytically collapsed into sub-regions that
contain only “fixed points”. This includes sub-regions that contain only one point (such that said
point is a “fixed point”). The regions without “fixed points” are manifolds. Therefore each point
of these manifolds can be defined as non-singular. These manifolds/regions can be represented by
tensors, the elements of which define points of said manifolds. Sub-manifolds (i.e. sub-regions)
could be defined by tensor operations such as contraction. Obviously, given a set of properties of
a specific region, a particular sub-region might not be a manifold. In this case, considering that
spacetime is a Riemann manifold, examining the neighborhood (of said sub-region) that has the
properties of a manifold is required. Such a non-manifold sub-region might contain “fixed
points”.  The micro-region concept can be applied here, such that a micro-region contains only a
“fixed point” (i.e. singularity), or only sets of “fixed points” (i.e. sets of singularities). Theorems
& methods for analyzing spacetime singularities are given in [2] and [5]. This is an ongoing
research area. Analytically, using micro-regions to contain singularities, the methods of [2] and
[5] can be applied to said micro-regions. Tensor representations (such as from [2]) for adjacent
singularity-free sub-regions (i.e. manifolds), can then be applied.

In summary, a regional structure of spacetime provides a means to analyze certain
cosmological (and perhaps quantum) phenomena. The question of the speed of light c, as a limit
to velocities, can be effectively analyzed under a regional structure of spacetime. Although,
controversy continues regarding c (and the Special Theory of Relativity), a regional structure of
spacetime can be a useful tool. It accommodates most of the prevailing cosmological theories
(including M-Theory).



Concepts and ramifications of a gauge interpretation of relativity

4

2.  Mag-Lev (Magnetic-Levitation) Considerations
To illustrate how electromagnetism can affect curvature, one can examine mag-lev

technology. This technology neutralizes gravity and thus locally induces a change in spacetime
curvature. Please note that boldface type indicates a vector quantity, in the remainder of this
document; example (v implies the vector quantity v).
The Ricci Tensor is a second order covariant tensor, formed by the contraction of the curvature
tensor ßm

ikj  , and usually denoted as  Rij . It is used to analytically express the curvature of
spacetime, in a specified neighborhood, at a specified time. Dynamic spacetime curvature thus
could be viewed as an event in spacetime. If said neighborhood is defined as the immediate
vicinity of a vehicle (wherein said vehicle possesses a configuration of electromagnetic devices,
such that said devices project an electromagnetic field (i.e. bubble), in/about the neighborhood of
said vehicle), the vehicle could move/fall along the geodesic produced by manipulating the
curvature of said neighborhood.

The equivalence of gravity and electromagnetism has been established in references [1]
and [2]. The process of magnetic levitation (mag-lev) is described in [10]. This mag-lev process,
where;

MB  ═>  strength of base magnet
ML  ═>  strength of levitation magnet

                                     (usually attached to a vehicle, such as a mag-lev train)

The force between the base (MB) and the vehicle (ML) is referred to as the heave-force h, in mag-
lev applications. The heave-force neutralizes gravity locally. This is a manifestation of spacetime
curvature, and one has the following;

h  = h (MB , ML)

h  ≈ Њ     ,    where:  Њ  = Њ (MB , ML)
In a generalized mag-lev application, the base-magnet MB and the lev-magnet ML  are both
connected to the vehicle.
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2.1.  Equations of Motion
The Ricci Tensor (in terms of ML and MB) can define the heave-force/induced-curvature

of the mag-lev effect resulting from ML and MB . From reference [3], (noting that a vector is a
tensor of rank 1), one has the expression

h = µ0I2β ⁄ 2πz = Fh

where:       β =   coil length
     I  =  current
    µ0  =  a magnetic constant

Fh  =  µ0I2 ƒ(D ⁄φ)  is the heave force description

where:    D = a magnet dimension  (electric flux density)
   φ =  separation of MB (base) and ML (lev-vehicle)

Fg = qE + (qv x B)  is the EM/gravity description (Ricci Tensor) for change in q at
velocity v.

Fh  ≡  Fg   , µ0I2 ƒ(D ⁄φ)  = qE + (qv x µH)

where:   H = B ⁄ µ   
  qE + (qv x µH)  is the Lorentz Force law

Again from reference [10], F is defined as follows;

F = MLMB ⁄ r2  (where r is the distance between magnets ML and MB)

        Rµν  =  – К Tµν   is the Ricci Tensor, Tµν is the Energy-momentum Tensor, and
µν  are translation and rotation coordinates respectively.
If F and Rµν are both expressions of spacetime curvature, one has the following;

MLMB ⁄ r2   =  – К Tµν                                                                (2.1)

                        =   Rµν (ML , MB)                                                   (2.2)

                       = Њ

With an expression for Њ  in terms of  ML and MB , it is possible to define a set of “equations-of-
motion” for a particle or vehicle.
Definitions:
          Њ  ---  the (ML and MB induced curvature) geodesic path velocity of a particle/vehicle
     ∫Њ  dt ---  position (along the induced curvature) geodesic path
  dЊ  ⁄ dt ---  acceleration (along the induced curvature) geodesic path
The curvature induced by ML and MB is equivalent to the heave-force h (i.e. mag-lev effect)
induced by ML and MB .

2.1.1.  Equations-of-Motion Conclusions.  Gravitation and Electromagnetism are respectively the
symmetric and antisymetric parts of the Ricci Tensor, within a proportionality factor. Gravitation
and electromagnetism are both expressions of spacetime curvature. Thus the mag-lev heave-force
is also an expression of spacetime curvature, and h and Њ  are arguably equivalent.

Obviously, a more rigorous derivation can lead to a fully comprehensive set of equations-
of-motion. The purpose here was to merely illustrate these arguments in an analytical framework.
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2.2.  Framework of Concept
Gravity is a manifestation of the curvature of spacetime.  Due to the equivalence of

gravity and electromagnetism (i.e. gravitation and electromagnetism are respectively the
symmetric and antisymetric parts of the Ricci Tensor), electromagnetism is also a manifestation
of spacetime curvature. Thus, by “proper use” of electromagnetism, spacetime curvature can be
induced. Mag-lev technology is an example of this. The term, “proper use”, herein means specific
configurations of electromagnetic forces can produce/induce desired curvature of spacetime.

A geodesic is defined in [4], as a curve uniformly “parameterized”, as measured in each
local “Lorentz frame” along its way. If the geodesic is “timelike”, then it is a possible world line
for a freely falling body/particle.

As stated in [4], free fall is the neutral state of motion. The path through spacetime, of a
free falling body, is independent of the structure and composition of that body. The
path/trajectory of a free falling body is a “parameterized” sequence of points (i.e. a curve). The
generalized coordinate qi is used to label/parameterize each point. Generally, qt refers to time.
Thus, each point (i.e. parameterized point) is an “event”. The set of events (i.e. ordered set of
events) is the curve/trajectory of a free falling body. In a curved spacetime, these trajectories are
the “straightest” possible curves, and are referred to as “geodesics”. The parameter qt (defining
time) is referred to as the “affine parameter”.

A Lorentz frame, at an “event” (ε0) along a geodesic, is a coordinate system, in which
gµν (ε0)  ≡   ηµν

and gµν  ≈  ηµν    in the neighborhood of ε0 ,

where:    µ  ═>    translation coordinate
              ν   ═>    rotation coordinate               1 ═>  µ = ν = 1,2,3
            ηµν     ═>      Minkowski Tensor  ═>     –1 ═>  µ = ν = 0
           gµν    ═>    metric tensor                        0 ═>  µ ≠ ν

The relationship between two points/events can be spacelike or timelike. The spacetime
interval between two events εi , εj  is given by;

dτ2   =  dt2
i – (1 ⁄ c2 )dεi

2  =  dt2
j – (1 ⁄ c2 ) dεj

2

dσ2  =  dε2
j  –  c2 dti

2   =   dε2
j –  c2 dtj

2    

Depending on the relative magnitude of dt and d│ε│⁄ c , dτ  or dσ  will be real-valued. If dτ  is
real, the interval is timelike. If  dσ  is real, the interval is spacelike. The degree of curvature can
determine the relationship between points/events along a geodesic, resulting from such curvature.
Thus, curvature defines a geodesic. A given curvature of spacetime produces a set of geodesics. A
properly controlled particle (or vehicle) can “fall” along a given geodesic. The velocity vector Њ
(under induced spacetime curvature) is dependent on the “degree” of that induced curvature.
Thus, Њ is not constrained by c (the speed of light in normal/our spacetime). The velocity vector
Њ is constrained only by the magnitude and configuration of the sources inducing the spacetime
curvature.
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3.  Relativity as a Gauge Theory
One can define a gauge theory as one in which dynamic variables are specified relative to

an arbitrary reference frame. Variables with physical significance are independent of which
arbitrary reference frame is chosen. Stated alternatively, physical variables are gauge invariant. If
one regards c as an arbitrary reference frame for the Theory of Relativity, then we can choose an
arbitrary Φ (where Φ > c) as an arbitrary reference frame. Then, a re-derivation of Relativity
using Φ (instead of c) can be examined. Such a “Light Gauge Theory” could be regarded as an
extended subset of Relativity. The Lorentz Transformation, using Φ, can be regarded as another
gauge type transformation. To examine Einstein’s field equations under a gauge framework, and
consider the mag-lev example (for the equivalence of gravity and electromagnetism), it is useful
to derive a modified Lorentz Transformation. This is done below in the Light Gauge Theory
discussion.

Electromagnetic radiation is the basis by which we perceive and measure phenomena. All
of our human experiences and observations rely on electromagnetic radiation. Observing
experiments and phenomena perturb electromagnetic radiation. Our observations and
measurements sense the resulting perturbations in electromagnetic fields. This realization has far
reaching ramifications, ranging from our basic perceptions of the universe, to our concepts of
space, time, and reality.

As a starting point, the Special Theory of Relativity postulates that the speed-of-light (c),
is the maximum velocity achievable in our spacetime continuum. A more correct statement, of
this result of Einstein’s ingenious theory, is that c is the greatest observable velocity (i.e. the
maximum velocity that can be observed) in our spacetime. This is because c (the natural
propagation speed of electromagnetic radiation) is our basis of observation. Phenomena moving
at speeds ≥ c cannot be normally observed using electromagnetic radiation. Objects/matter
moving at trans-light or super-light velocities will appear distorted or be unobservable,
respectively. A brief analytical discussion of these factors is given below, in following sections.
This is the first, of the two primary principles, exploited in this document.
The second principle is that electromagnetism and gravitation are both expressions of spacetime
curvature. Stated from the analytical perspective, electromagnetism and gravitation are
respectively the antisymetric and symmetric parts of the gravitational Ricci Tensor. Since both
the electromagnetic field and the gravitational field are obtained from the Riemann Curvature
Tensor, both fields can be viewed as manifestations/expressions of spacetime curvature. This
principle is proven in [7], and several other works.

3.1.  Some Basic Issues
The above cited (and related) works also raise fundamental issues as to the origin,

dynamics, and structure of our spacetime continuum.  Our universe appears to be dynamic in
several parameters. It is suggested that the results arrived at in this document might shed some
small light on a few of said fundamental issues. Theoretically, the maximum achievable velocity
is determined by curvature. The maximum achievable velocity is not limited by c (the speed-of-
light) in normal/unperturbed spacetime.
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3.2.  Basic Concepts
Trans-light and super-light speeds have long been the domain of the science fiction

community. In recent years, serious cosmologists and theoreticians have examined this arena.
Below is presented a generalized view of the Special Relativity Theory. One starts with a regional
structure of spacetime.

3.2.1.  Regions of Spacetime.  It has been suggested (for example in [9], by some string-theorists,
etc.) that the “Big Bang” was a local phenomena, and that other “Big Bang” type phenomena
events might be observable in distant reaches of our known universe. Additionally, many of the
theoretical problems with the “Big Bang theory” (primary among which is causality), can be
solved by considering a regional structure of spacetime.  The, depending on the size of the
regions, a “Big Bang” event could be viewed as a local phenomena.
• Below in this document, an arbitrary region of spacetime is examined and equations-of-

motion (based on a generalized parameter of said region) are derived, so as to develop a
generalized view of Special Relativity.

A regional view of spacetime can offer several analytical advantages and some ramifications. For
this work, one can consider our known spacetime as a “region” of the universe. Under this
framework, certain phenomena encountered by astro-physicists and cosmologists might be
accounted for through boundary conditions of our spacetime region.  Black holes, and the
possible variance of c, are examples of such phenomena.

Further, if the “Big Bang” is a local phenomena, this reality would suggest that the
universe has always existed. Coupled with aspects of M-Theory, a regional structure of the
universe makes it not unreasonable to consider the universe without a specific origin, as one
contemplates the definition of origin in this context. It is possible that the universe has always
existed, [9]. Additionally, observed background radiation could be accounted for as inter-regional
energy exchange.

3.3.  Velocity
To examine constraints on velocity, it is useful to begin by deriving a generalized view of

Special Relativity. An arbitrary region λ of spacetime will be examined. This could conceivably
be our region/sub-universe/brane of existence. A generalized parameter of this region will also be
used. Let this generalized parameter  Φ  be defined as the maximum natural velocity (i.e. energy
speed of propagation) in this region. Then one can derive the concepts of Special Relativity,
based on parameter Φλ  in region λ .

For the purpose of this document (and to attempt leeward bearing to other naming
conventions) the generalized derivation is referred to as the Light Gauge Theory (LGT). In this
context “gauge” is defined as a standard of measurement, or a standard of observation.
Additionally, the speed-of-light c ,  will also denote the velocity (vector) c . Thus, both the speed
& velocity-of-light are denoted by c, for notational simplicity in this document.

The term “neighborhood” should be understood as the immediate volume of spacetime
surrounding (and containing) the point, particle, or vehicle under discussion, in the context of this
document.
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4.  The Light Gauge Theory
 Given:
Two observers a distance x apart in a region λ of spacetime. An event happens at observer A’s
position, at time t, (x1, x2, x3, t). The observer B, at position
(x’1, x’2. x’3, t’) also observes the event that happens at A’s position.
Let:

---   v λ  define the maximum propagation speed of signals in region λ
---   v λ  >  c ,  v λ  >  c λ

This is a counter assumption that c is not necessarily universal, and that c λ is not
the maximum speed a signal can propagate in spacetime region λ .
Two viewpoints/arguments are considered:

1. The maximum signal velocity, in a spacetime region, is unbounded (i.e. ∞)
2. The maximum signal velocity, in a spacetime region, cannot exceed some Φ in that

spacetime region, (e.g. Φλ , for the spacetime region λ). One states that
Φλ  ≠ c λ  , can be viewed as the general case.

Argument 1;
This 1st viewpoint would imply instantaneous synchronization, and the observable

simultaneity of diverse events. Instantaneous propagation is an oxymoron. It does not follow
observable (or analytical) analysis.

Argument 2;
This 2nd viewpoint involves deriving a Lorentz transformation for a spacetime region.

One then defines an inter-region transformation for observers in different spacetime regions,
where the regions are sub-manifolds on the general Riemann Manifold of spacetime.
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4.1.  Modified Lorentz Transformation
For the remainder of this document, I consider the set of spacetime regions that are

definable as sub-manifolds on the Riemann Manifold of spacetime.  The Theory of General
Relativity describes physical space (i.e. our spacetime region) as a manifold.

One considers, in spacetime region/(sub-manifold) λ , two observers moving relative to
each other, at velocity v.  For notational simplicity, one observer will be in an unprimed
coordinate system, (xi , ti ). The other observer is in a primed coordinate system, (x’i , t’i ). One
“assumes” (as in Special Relativity) that , at the origin of each reference frame,  x = 0,  t = 0  .

Let:
x’ =  αx + v(βv • x  +  κt)

t’  =   ζv • x  + ηt

α, β, κ, ζ, η  fall from the pre-relativistic equations   x’ = x + vt , and  t’ = t

Thus, α, κ, η  approximate 1, and  β, ζ  approximate 0, when v < Φλ .  One defines  cλ  as the speed
of light in spacetime region λ . Let cλ  <  Φλ .  If one assumes (according to Relativity) that the
speed of light is constant, one has      cλ = c < Φλ .

If the primed coordinate system has a velocity v, in the unprimed coordinate system, and
the unprimed coordinate system has velocity v in the primed coordinate system, one has the
following;

     If x’ = 0 ,  then  x = – vt    and   if x = 0 , then  x’ = vt’

                         0  =  – αvt + v(βv • vt + κt)
                      =  – αvt + κvt  –  βv2 • vt2

                   α =  κ – βv2    
t’  =   ζv • x  + ηt

t’  =   –ζv • vt + ηt

          ηt  =  ζv2t  ,  ( where  η = ζ   for proper values of v2 )

One can now discuss the maximum signal velocity (Φλ ) ,  possible in the λ region of spacetime.
Assume that this maximum is universal, in the λ region of spacetime. In other words, (Φλ )   is the
maximum attainable signal velocity in the λ region of spacetime, irrespective of the observer’s
coordinate system.
Note;

1. Here, the λ region of spacetime is defined as a sub-manifold on the (general spacetime)
Riemann Manifold.

2. Assume that Φλ  is a function of the curvature of spacetime region λ.

(In the remainder of this document, for notational simplicity and confusion avoidance, Φλ will be
used interchangeably with Φλ ,  to imply the vector Φλ )
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Suppose at time t = 0 , an event occurs at x = 0 , the origin of the unprimed coordinate
system in region λ . Then at any point in region λ (with coordinate x), a signal traveling at
maximum velocity will arrive at x by:

                           Φ2
λ t2  = x2  ,   t > 0                                                                              (4.1)

this is also true for x’ ,      thus     Φ2
λ t’2  = x’2

                          x =  – vt ,    x2 = v2t2            ( for x’ = 0 )

                                             t2  = x2 ⁄ Φ2
λ

                                             v2  = x2 ⁄ t2

      α  =   κ –  ( x2 ⁄  t2 ) β , κ = η
          =   κ –  v2 β

            x’  = α Φλ t  + v(βv • Φλ t  +  κt)                                                                                (4.2)
            t’   = ζ v • Φλ t +  κt

           =  (ζ v • Φλ  + η )                                                                                                  (4.3)

  Φλ t’  = α Φλ t  + vt (βv • Φλ  +  κ)
                  =  (ζ v • Φλ t + ηt)
                  =  (ζ v • Φλ  +  κ)t

       ζ v • Φλ t +  κt  =  α Φλ t  + v βv • Φλ –  t  +  κvt)
                                      =  α Φλ t  + v • Φλ t (v β  –  ζ )  +  κt (v  –  1)
                                      =  α + v (v β  –  ζ )  +  (κ ⁄ Φλ)(v  –  1)

                               =  α + v (v β  +  κ ⁄ Φλ)  –  ζ v   –   κ ⁄ Φλ   
                               =  α + v2 β  +  (κ ⁄ Φλ)(v   –   1) – ζ v
Let :
       β  =   v ⁄ Φλ

                 then:
                       ζ v • Φλ t +  κt  =  α Φλ t  + v v2t +  κvt
                         ζ v • Φλ  +  κ  =  α Φλ   + v v2 +  κv
                                               =  α  + v v2 ⁄ Φλ  +  κv ⁄ Φλ

                                                    (where;   α = κ – v2 β
                                                                      = κ – v2 v ⁄ Φλ  }

                                           ζ v   +   κ ⁄ Φλ   =  α + v2 β  +   κ β
                   ζ v   +   κ ⁄ Φλ  – v2 β  –   κ β   =  α
                   ζ v   +   κ ((1 ⁄ Φλ ) – β)  –  v2 β =  α
                     ζ v   +   κ (1 –  Φλ β)  –  v2 β   =  α
                        κ  +  (ζ v   –   Φλ β) – v2 β   =   α
                          {where;      (ζ v   –   κΦλ β)  =  0 ,   under certain conditions}
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4.1.1. Inter-Region Transformation.
Given:

x2 + y2 + z2 – Φ2
λ t2 = (x’2 + y’2 + z’2 – Φ’2

λ t’2 )f(v)
                                = 0

      {y2 = y’2 ,  z2 = z’2   ═>    no  motion}
 x2 + y2 + z2 – Φ2

λ t2  = (x’2 + y’2 + z’2 – Φ’2
λ t’2 )f(v)

                    = 0
             x2  –  Φ2

λ t2  = x’2 – Φ’2
λ t’2

Let;
 λ(n) = 1

x’(x,t) = kx + ℓt
 t’(x,t) = mx + nt   ═>   time (in one coordinate system) is a function of 

position, in another coordinate system

If  x’ = 0
         = k(vt) + ℓt   ,    thus;  kv = –ℓ

x’ =  kx – ℓvt
t’  =  mx + nt

where v is the relative velocity of the unprimed coordinate system,
relative to the primed coordinate system
x2 – Φ2

λ t2 = k2x2 – k2xvt + k2v2t2  – Φ2
λ m2x2 – Φ2

λ mnxt – Φ2
λ n2t

              0 = (k2 – 1 – Φ2
λ m2)x2 – (k2v + Φ2

λ mn)xt + t2(k2v2 – Φ2
λ n2 + Φ2

λ)
since x and t are arbitrary

k2 – 1 – Φ2
λ m2 = 0 ,    k2v + Φ2

λ mn = 0 ,   k2v2 – Φ2
λ n2 + Φ2

λ = 0

k2 = 1 + Φ2
λ m2 ,                                      Φ2

λ mn  = – k2v
                                                                            k2v + Φ2

λ mn  = 0
                                                             v + v Φ2

λ m2  + Φ2
λ mn  = 0

substituting the expression (1 + Φ2
λ m2)  for k2 in (k2v2 – Φ2

λ n2 + Φ2
λ = 0), one has

                                      (1 + Φ2
λ m2)v2  –  Φ2

λ n2 + Φ2
λ = 0

                                        (1 + Φ2
λ m2)v2  =   Φ2

λ n2 –  Φ2
λ

                                           (1 + Φ2
λ m2)  =   Φ2

λ (n2 –  1) ⁄ v2      
                                                          m2  =   ((n2 –  1) ⁄ v2) – 1 ⁄ Φ2

λ
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one now has an initial expression for m ;
                                       m   =   (((n2 – 1) ⁄ v2 )  – 1 ⁄ Φ2

λ )½                                                           (4.4)

         v2 + v2 ⁄ Φ2
λ m2 – Φ2

λ ((v + v Φ2
λ m2) ⁄ Φ2

λ m2 ) + Φ2
λ = 0

   v2 ⁄ Φ2
λ m2 + v2 ⁄ Φ4

λ m4 – v2 – k v2 Φ2
λ m2 – v2 ⁄ Φ4

λ m4 + Φ2
λ m2 = 0

                                                        –v2  – v2 ⁄ Φ2
λ m2 + Φ4

λ m2 = 0

m2 = v2 ⁄ ( Φ4
λ – v2 Φ2

λ) = v2 ⁄ (1 – (v2 ⁄ Φ2
λ ))

k2  =  1 + v2 ⁄ (Φ2
λ – v2 ) = Φ2

λ ⁄ (Φ2
λ  – v2 ) = 1 ⁄ (1 – v2 ⁄ Φ2

λ )

                                        k = 1 ⁄ (1 – v2 ⁄ Φ2
λ )½

                                                                               (4.5)
                                       m = v ⁄ (1 – v2 ⁄ Φ2

λ )½                                                                             (4.6)
                                       ℓ  = –v ⁄ (1 – v2 ⁄ Φ2

λ )½   = –m                                                                (4.7)
                                        n =  (v + v2 ⁄ (Φ2

λ – v2 )) ⁄ (Φ2
λ v ⁄ Φλ (Φ2

λ –v)½  )
                                           =  –1 ⁄ (1 – v2 ⁄ Φ2

λ )½                                                                         (4.8)

remembering that: x’ = kx – ℓvt,   t’ = mx + nt
Letting;  β = v ⁄ Φλ   

then;
x’ = (x – vt) ⁄ (1 – β2)½                                                                          (4.9)
 t’ = (vx – Φ2

λ t) ⁄ Φ2
λ (1 – β2)½                                                              (4.10)

          after algebraic simplification
                            dx’ ⁄dt’ = vx’ =  (dx – vdt) ⁄ ((vdx ⁄ Φ2

λ) – dt)
                                                 =  (v’x – v) ⁄ ((vxx ⁄ Φ2

λ) – 1)
                               dy’⁄dt’ = v’y  ,  dz’⁄dt’ = v’z
                                 dt’ =  ((vdx ⁄ Φ2

λ) – dt) ⁄ (1 – β2)½                                                               (4.11)

4.1.2.     Length Contraction.
x’2 – x’1 =  (x2 – x1) ⁄ (1 – β2)½                                                             (4.12)

thus, an object measures shorter in coordinate system ξ’, when observed from coordinate system
ξ, iff ξ’ is in motion relative to ξ.

4.1.3. Time Dilation.
                                   t2 – t1 =  (t’2 – t’1) ⁄ (1 – β2)½                                                                         (4.13)
thus, time ∆t measures larger in a frame moving relative to the frame holding the clock.

4.1.4. Modified Lorentz Transformation Conclusions.  By the above transformations, where β =
v ⁄ Φλ  , a particle moving at velocity v ≥ Φλ  drives the transformation equations to infinity. Thus,
in any given spacetime region λ,  v ≥ Φλ  implies the particle is not observable in region λ, when
measured by signals propagating (in region λ) at velocities vλ < Φλ . If we let Φλ  =  c , we have the
(length contraction and time dilation) observables from Relativity.

4.2. Φλ and Curvature
Einstein intuitively chose c (the natural speed of electromagnetic wave propagation in our

spacetime region) to be the Φλ of his derivations. This was apparently an intuitive choice, since
the speed of light is the highest “natural velocity” observed in our spacetime region. One can
state that c is a special case of the general case Φλ . Also, for the generalized case, Φλ can be
greater than c.
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For this work, the “natural speed” is defined as the velocity of propagation of
electromagnetic energy along a geodesic. Since a geodesic curve is the result of spacetime
curvature, the “natural speed” is arguably dependent on the curvature of spacetime. Thus, given a
regional structure of spacetime, the curvature θλ of region λ  determines Φλ . Then

θλ  ═> Φλ (θλ) is a function of curvature.
This implies that the “generalized natural speed” is dependant on the curvature. For any
spacetime region i, Φi (θi);  where θi is the curvature of region i.  Methods for calculating θi , for
our region of spacetime, are found in documents [1] and [2].

4.3. Inter-Region Relative Observations
For each inter-region observation, the related maximum of each region,

(Φi , Φj , … ), must be derived.  Examining motion in one region, while the observer is in another
region, requires some additional considerations.

Initially, the thought is to algebraically add the regional maximum velocity vectors, ( Φi  ,
Φj ), and treat the observer’s region as stationary. The other region’s velocity is ( Φi  + Φj ),
relative to the observer’s region. This sum can be regarded as logically equivalent to Einstein’s c,
for inter-region relative motion.

4.3.1. Notes on Dark Energy (considerations & possibilities).  In 1998, physicists discovered
that the expansion of the universe is speeding up. They (these astro-physicists) postulate that a
new (i.e. as yet undefined) form of energy is causing the galaxies, of the observable/known
universe, to fly apart at accelerating speeds. Today, this unknown energy is referred to as “Dark
Energy”. Scientists theorize that “Dark Energy” comprises approximately  ⅔  of the known
universe. However, no one really knows what “Dark Energy” is.

The accelerated expansion calls into question the “Big Bang Theory”, in that expansion
should be decelerating (due to gravity) after the (so called) “Big Bang” event. “Dark Energy”
appears to oppose gravity. To understand what “Dark Energy” might be, one might first examine
definitions of gravitation.

Gravitation & electromagnetism are both manifestations of spacetime curvature. These
manifestations cause matter & energy to behave in certain ways. Matter & energy behave
according to the curvature of spacetime in their (the particular matter or energy) immediate region
of spacetime. Since “Dark Energy” appears to oppose gravity, and gravity is a manifestation of
spacetime curvature, one could argue that “Dark Energy” is a manifestation of spacetime
curvature. Also “Dark Energy” and “Dark Matter” might be equivalent.

The curvature of spacetime (in regions where “Dark Energy” phenomena manifests) is
such as to effect matter & energy in a manner different (perhaps opposite) from the curvature of
regions in which gravitational phenomena is observed. Stated alternatively; spacetime regions in
which “Dark Energy” phenomena are exhibited, will have curvature different/opposite from
spacetime regions in which gravitational phenomena are exhibited. This postulate is a further
argument for a regional structure of spacetime. It could also explain the observed accelerated
expansion of galaxies. Additionally, quintessence, a scalar field with equations of state defined
as;

Pq  =  ω ρq’               where:  P →  pressure ,  ρ → density
                                                         ω → (-⅓) ,  q → a generalized parameter
             P   =  ω ρc2

as yet has no concrete evidence of its existence. However, some scientists think that such
evidence could come from variations in the fundamental constants of spacetime. A regional
structure of spacetime could support such variance.
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Quintessence is dynamic, and generally has density and equations of state that vary through
spacetime.

5.  Summary
The “Light Gauge Theory” defines concepts that remove the speed of light (c) as a

constraint on achievable velocities, in normal spacetime. It is also important to note that, if c is a
function of regional curvature, then causality is not violated by matter traveling at velocities > c .

It is useful to note that the prevailing modern cosmological theories (including M-
Theory) can be accommodated under the “Light Gauge Theory”, and the concept of a regional
structure of spacetime. The derivations presented here attempt to maximize clarity, and minimize
notational complexity, without sacrificing the necessary rigor. Obviously, a more rigorous
derivation can lead to a fully comprehensive set of equations-of-motion.

6.  References

[1] Weinberg, Steven  1972  Gravitation and Cosmology  (New York, John Wiley & Sons)

[2] Misner CW,.Thorne KS, Wheeler JA  1973  Gravitation (San Francisco, Freeman & Co )

[3] Coleman, Sidney  1988  Why There is Nothing Rather Than Something  (North Holland, 
Eisevier Sci. Publ.)

[4] Green M, Schwarz J, Witten E,  1987  Superstring Theory, Vols.1 & 2  (Cambridge, 
Cambridge University Press)

[5] Hawking  SW  1992  Chronology Protection Conjecture (Cambridge, Cambridge 
University Press)

Hawking  SW, Ellis GFR  1973  Chronology Large Scale Structure of Spacetime 
(Cambridge, Cambridge University Press)

[6] Evans M , Vigier J,  1994 – 1996  The Enigmatic Photon, vols.1-3  (Dordrecht, Kluwer 
Academic Publishers)

[7] Evans M,  1996  The B(3) Field as a Link Between Gravitation & Electromagnetism in the
Vacuum (Found. Phys. Lett  9 No.5)

[8] Witten E, 1995 String Theory Dynamics in Various Dimensions (Princeton, IAS)

[9] Gott-III JR, Li L, 1998 Can the Universe Create Itself?  (Phys Rev. D58, 023501)

[10] Moon F, 1994  Superconducting Levitation  (New York, John Wiley & Sons)


