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By considering the irreducible representations of the Einstein group
(the Lie group of general relativity), Sachs [1] has shown that the elec-
tromagnetic field tensor can be developed in terms of a metric qµ, which
is a set of four quaternion-valued components of four-vector. Using this
method, it is shown that the electromagnetic field vanishes [1] in flat
spacetime, and that electromagnetism in general is a non-Abelian field
theory. In this paper the non-Abelian component of the field tensor is
developed to show the presence of the B(3) field of the O(3) electro-
dynamics, and the basic structure of O(3) electrodynamics is shown
to be a sub-structure of general relativity as developed by Sachs. The
extensive empirical evidence for both theories is summarized.

Key words: Irreducible representations of the Einstein group, B(3) field,
O(3) electrodynamics.

1. INTRODUCTION

In a development of Einstein’s general relativity using irreducible rep-
resentations of the Einstein group, Sachs [1] has shown that the electro-
magnetic field tensor can exist only in curved spacetime and vanishes
in the fast spacetime of special relativity. Using this theory [1], Sachs
has shown that the structure of electromagnetism is in general non-
Abelian. The non-Abelian component of the field tensor is defined
through a metric qµ, which is a set of four quaternion-valued compo-
nents of a four-vector, components which can be represented by a 2×2
matrix. In condensed notation,

qµ = (qµ0, qµ1, qµ2, qµ3), (1)

and the total number of components of qµ is sixteen. The covariant
and second covariant derivatives of qµ vanish [1], and the line element
is given by

ds = qµ(x)dxµ, (2)

which in special relativity (flat spacetime) reduces to

ds = σνdxµ, (3)

where σµ is a four-vector made up of Pauli matrices:

σµ =
([

1 0
0 1

]
,
[

0 1
1 0

]
,
[

0 −i
i 0

]
,
[

1 0
0 −1

])
. (4)

In the limit of special relativity

qµqν∗ = qνqµ∗ → σµσν − σνσµ, (5)
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where ∗ denotes reversing the time component of the quaternion-valued
qµ. The most general form of the non-Abelian component of the elec-
tromagnetic field tensor in conformally curved spacetime is [1]

F µν =
1

8
QR (qµqν∗ − qνqµ∗) . (6)

If we are considering magnetic flux density components of F µν , then
Q has the units of weber and R, the scalar curvature, has the units of
inverse square meters. In the flat spacetime limit, R = 0, so it is clear
that the non-Abelian part of the field tensor Eq. (6), vanishes in special
relativity. The complete field tensor F µν vanishes [1] in flat spacetime
because the curvature tensor vanishes. These considerations amount to
a diametric refutation of Maxwell-Heaviside theory and of the idea that
the electromagnetic sector of unified field theory is U(1) in symmetry.
It is shown in this paper that the simplest symmetry possible for the
electromagnetic sector is O(3). Most generally, the Sachs theory is a
closed field theory that unifies in principle all four fields: gravitational,
electromagnetic, weak, and strong.

In Sec. 2 it is shown that there exist generally covariant four-
valued four-vectors which are components of qµ, and these are used
to construct the basic structure of O(3) electrodynamics in terms of
single-valued components of the quaternion-valued metric qµ. The pa-
per contains a discussion of the fact that the Sachs theory can be re-
duced to O(3) electrodynamics, which is a Yang-Mills theory [2,3], and
summarizes the empirical evidence for both the Sachs and O(3) theo-
ries of electrodynamics. In other words, empirical evidence is given of
the instances where the Maxwell-Heaviside theory fails and where the
Sachs and O(3) electrodynamics succeed in describing empirical data
from various sources. The paper provides irrefutable proof that the B(3)

field [4] is a physical field of curved spacetime, a field which vanishes
in special relativity. Similarly, the structure of O(3) electrodynamics
is one of curved spacetime.

2. DERIVATION OF THE STRUCTURE OF O(3) ELEC-
TRODYNAMICS IN TERMS OF METRICS OF THE
SACHS THEORY

In Eq. (5) the product qµqν∗ is quaternion-valued and non-
commutative, but not anti-symmetric, in the indices µ and ν. The
B(3) field and structure of O(3) electrodynamics must be found from a
special case of Eq. (5), showing that O(3) electrodynamics is a Yang-
Mills theory [2,3] and also a theory of general relativity. The important
conclusion is reached that Yang-Mills theories can be derived from the
Sachs theory, which can therefore describe the weak and strong fields
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in principle within a closed classical field theory [1] derived from Ein-
stein’s general relativity. This result is consistent with the fact that all
theories of physics must in principle be theories of general relativity.

From Eq. (1) it is possible to write four-valued generally covari-
ant, components such as

qx =
(
q0
x, q

1
x, q

2
x, q

3
x

)
, (7)

which in the limit of special relativity reduces to

σx = (0, σx, 0, 0). (8)

Similarly, one can write

qy =
(
q0
y , q

1
y , q

2
y , q

3
y

)
→ (0, 0, σy, 0) (9)

and use the property

qxq
∗
y − qyq∗x → σxσy − σyσx (10)

in the limit of special relativity. The only possibility from Eqs. (7) and
(9) is that

q1
xq

2∗
y − q2

yq
1∗
x = ∂iq3

2,
↓

σxσy − σyσx = ∂iσ2,
(11)

where q1
x is single-valued. In a 2× 2 matrix representation it is:

q1
x =

[
0 q1

x

q1
x 0

]
→ σx =

[
0 1
1 0

]
. (12)

Similarly,

q2∗
x =

[
0∂ iq2

y

iqy 0

]
→ σy =

[
0 −i
i 0

]
(13)

q =
[
q 0
0 qz

]
→ σz =

[
0 0
0 −1

]
. (14)

Therefore there exist cyclic relations with O(3) symmetry:

q1
xq

2∗
y − q2

yq
1∗
x = ∂iq3

z ,

q2
yq

3∗
z − q3

zq
2∗
y = ∂iq1

x, (15)

q3
zq

1∗
x − q1

xq
3∗
z = ∂iq2

y ,
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and the structure of O(3) electrodynamics begins to emerge [2,3]. If
the space basis is represented by the complex circular ((1),(2),(3)), then
Eqs. (15) become,

q(1)
x q(2)∗

y − q(a)
y q(1)∗

x = ∂iq(3)
z ,

q(2)
y q(3)∗

z − q(3)
z q(2)∗

y = ∂iq(1)
x , (16)

q(3)
z q(1)∗

x − q(1)
x q(3)∗

z = ∂iq(2)
y .

These are cyclic relations between single-valued metric field compo-
nents in the non-Abelian part [Eq. (6)] of the quaternion-valued F µν .
Equation (16) can be put in vector form:

q(1) × q(2) = iq(3)∗,

q(2) × q(3) = iq(1)∗, (17)

q(3) × q(1) = iq(2)∗,

where the asterisk denotes ordinary complex conjugation in Eq. (17)
and quaternion conjugation in Eq. (16).

Equation (17) contains vector-valued metric fields in the com-
plex space basis ((1),(2),(3)) [2,3]. Specifically, in O(3) electrodynam-
ics, which is based on the existence of two circularly polarized compo-
nents of electromagnetic radiation [2]:

q(1) =
1√
2

(ii + j)eiφ, (18)

q(2) =
1√
2

(−ii + j)e−iφ, (19)

giving
q(3)∗ = k (20)

and

B(3) =
1

8
QRq(3). (21)

Therefore the B(3) field [4] is proven from a particular choice of metric
using the irreducible representations of the Einstein group. It can be
seen from Eq. (21) that the B(3) field is the vector-valued metric field
q(3) within a factor 1

8
QR. This result proves that B(3) vanishes in flat

spacetime, because R = 0 in flat spacetime. If we write

B(0) =
1

8
QR, (22)

5



then Eq. (17) becomes B cyclic theorem [2,3] of O(3) electrodynamics:

B(1) ×B(2) = iB(0)B(3)∗, et cyclicum. (23)

Since O(3) electrodynamics is a Yang-Mills theory [2,3], we can write

q = q(1)i + q(2)j + q(3)k, (24)

from which it follows that

Dµ(Dµq) = 0, Dµq = 0, (25)

i.e., the first and second covariant derivatives of q vanish.

DISCUSSION

In this discussion we give empirical evidence for the ability of both the
Sachs and O(3) theories to describe data which cannot be described
by the Maxwell-Heaviside theory of flat space-time. The Sachs theory
is able to describe parity violating and spin-spin interactions from first
principles [5] on a classical level; can explain several problems of neu-
trino physics; the Pauli exclusion principle can be derived from it. The
quaternion form of the theory, which is the basis of this paper, was first
developed in 1982 [6] and predicts small but non-zero masses for the
neutrino and photon; it describes the Planck spectrum of black body
radiation classically; describes the Lamb shifts in H; proposes grounds
for charge quantization; predicts the lifetime of the muon state; de-
scribes the electron-muon mass splitting; predicts physical longitudinal
and scalar photons and fields.

To this list we can add many additional advantages of O(3)
electrodynamics over U(1) electrodynamics; the following list is not
recognizable as a consequence of the fact that in flat spacetime the elec-
tromagnetic field vanishes, causing many self-inconsistencies to emerge,
for which the simplest remedy is O(3) electrodynamics:

(1) There is a self-inconsistency in the gauge theory that leads to
the Maxwell-Heaviside theory in that the former eliminates a commu-
tator such as B(1)×B(2) by definition. This commutator is, however, an
observable of the inverse Faraday effect, and is inputted phenomenolog-
ically in the Maxwell-Heaviside theory. In O(3) electrodynamics this
commutator is defined self-consistently as part of the definition of the
field tensor [2] in conformally curved space-time and the commutator
is proportional to the B(3) field, as can be seen in Eq. (23), and in the
third Stokes parameter [2,3].

(2) The Sagnac effect with platform at rest cannot be described
by Maxwell-Heaviside theory due to motion reversal symmetry [7].
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There is no phase shift, contrary to observation. The O(3) electro-
dynamics succeeds in explaining the phase shift both with platform at
rest and in motion, with great precision [7].

(3) The phase shift of the Michelson interferometer cannot be
described by Maxwell-Heaviside theory due to parity inversion symme-
try, whereas the O(3) electrodynamics succeeds in describing the effect
accurately [8].

(4) Normal reflection is not described by Maxwell-Heaviside the-
ory again because of parity inversion symmetry [3]. The O(3) electro-
dynamics describes the effect precisely through a non-Abelian Stokes
Theorem [4,9]. More generally, physical optics is a theory of general
relativity, which is why these inconsistencies emerge in the Maxwell-
Heaviside theory.

(5) The O(3) field equations are Yang-Mills equations which can
now be recognized as special cases of Sachs theory. These are equations
of conformally curved spacetime.

(6) The O(3) field equations are homomorphic with Barrett’s
SU(2) field equations and have been developed extensively [4,9] in close
coordination with empirical data.

(7) The O(3) theory gives the correct topological and dynam-
ical phases in interferometry while Maxwell-Heaviside theory fails to
describe interferometry and physical optics. The fundamental reason
is that the electromagnetic field vanishes in flat space-time, so a theory
of conformally curved space-time, such as O(3), is required.

(8) One consequence of the adaptation of an O(3) sector sym-
metry for electrodynamics is that the electroweak theory becomes
SU(2) × SU(2), with concomitant prediction of an observed massive
boson [10,11].

(9) The Lorentz condition is eliminated in O(3) electrodynamics
[9], allowing allowing predictions of energy from the vacuum. Electro-
magnetic energy from curved spacetime is inherent in the Sachs theory
[1] and O(3) theory [12].

(10) O(3) electrodynamics have been applied to quantum elec-
trodynamics showing minute corrections to the Lamb shift and anoma-
lous g factor of the electron [4].

(11) No contradiction with empirical data has been found with
O(3) electrodynamics, nor with the Sachs theory. The above lists many
contradictions with data of the Maxwell-Heaviside theory. The fun-
damental reason for these contradictions is that if one examines the
irreducible representations of the Einstein group, the electromagnetic
field vanishes in flat spacetime.

(12) The O(3) electrodynamical structure is mathematically
that of a Yang-Mills theory with a physical internal gauge space based
on the existence of circular polarization and labeled ((1),(2),(3)) as in
Sec. 2 of this paper.

(13) There is a self-inconsistency in the stress-energy-
momentum tensor of the Maxwell Heaviside theory which is removed
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by the O(3) theory [13].
(14) The O(3) theory saves the correspondence principle in the

Compton effect [9] whereas the U(1) theory fails to do so.
(15) The technique of radiatively induced fermion resonance is

predicted in O(3) electrodynamics [3,4] and is corroborated in the para-
magnetic inverse Faraday effect [14]. Neither effect exists in Maxwell-
Heaviside theory without additional phenomenology.

(16) The O(3) field equations produce observed soliton and in-
stanton solutions [4] which are missing from the Maxwell-Heaviside
equations.

(17) The O(3) electrodynamics lead to the Crowell duality prin-
ciple [4], an example of which is the SU(2)× SU(2) structure of elec-
troweak theory.

(18) Covariant O(3) derivatives are used in O(3) theory, indi-
cating that it is a theory of conformally curved spacetime.

In summary, by interlocking the Sachs and O(3) theories, it be-
comes apparent that the advantages of O(3) over U(1) are symptomatic
of the fact that the electromagnetic field vanishes in flat space-time
(special relativity), if the irreducible representations of the Einstein
group are used as described by Sachs [1].
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