
\1 d.\\ -

and a term due to the conjugate product of the electromagnetic field: 

.e..J a-. A-,.,. A*" 
- -
:t~ 

which defines the B(3) field introduced in previous chapters: 

Eq. ( <i(' \ ) is the hamiltonian that defines radiatively induced fermion resonance (RFR), 

extensively discussed elsewhere { 1 - 1 0} but derived here in a rigorous way from the fermion 

equation or chiral representation of the Dirac equation. 

Spin orbit coupling and the Thomas factor can be derived from the Hl.d.. 

hamiltonian defined as follows: 

(!.. (f -~8_) f ~. (s_- f_!iJ) 1 -('is) 
-

This hamiltonian has its origins in the following equation: 

Gi ~(~:+zf +'-•{r-e~)(r;-~tY>-c)Y'·(r-e!l))+-{~0 
in the approximation: 

In this approximation. Eq. ( ~~ ) becomes: 



and in the approximation: 

the H'l 'l hamiltonian is recovered as the last term on the right hand side. 

In the derivation of the spin orbit coupling term several assumptions are made, but 

not always made clear in textbooks. The vector potential A is not considered in the derivation 

of spin orbit interaction, so that only electric field effects are considered. Therefore the 

relevant hamiltonian reduces to: 

It is assumed that the first p is the operator: 

f - - ;,{}'-(] - 1-_ -
but that the second p is a function. This point is rarely if ever made clear in the textbooks. 

This assumption can be justified only on the grounds that it seems to succeed in describing the 

experimental data. When this assumption is made ~q. ( ~ f ) reduces to: 

-- -
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The '5L operator acts on r !: • i + : so by th: Leibnitz Theorem : 

'l (r~ · 1 t) ~ 'l(a-·1)ff + ~ ·x 'J_ 

In this equation the Leibnitz Theorem asserts that: 

1- r LY-1) -(~!>) 

(!: -'q_ r ~ ·_r_Jf ~c~0 
+ 

so the spin orbit interaction term is: 

\-\ ~h ... - le__t 
"'l-1 ·r ") 1 

4-~ C.-

It is seen Eq. ( '\ '-\- ) is only one out of many possible effects that emerge from the fermion 

equation and which should be systematically investigated experimentally. 

In the development of the spin orbit term the obsolete standard physics is used as 

follows: 

-
-6 • \.:: - - -

Now use the Pauli algebra: 

o-G - . f -- - -- -(en) 



so the real part ofthe hamiltonian from these equations becomes: 

-o. ~Xf 

in which p is regarded as a function, and not an operator. If this second p is regarded as an -
operator, then new effects appear. 

Note carefully that in the derivation of the Zeeman effect, ESR, NMR and the g 

factor of the electron, both p's are regarded as operators, but in the derivation of spin orbit 

interaction, only the first pis regarded as an operator, the second pis regarded as a function. 

Finally in the standard derivation of spin orbit interaction, the Coulomb potential-of 

electrostatics is chosen for the scalar potential: 

so the electric field strength is: 

_q - .e ---
The relevant spin orbit hamiltonian becomes: 

]h;.f~ - z:; ~ < ~ 
~1\ G ,_ o ~ 

-

in which the orbital angular momentum is: 

l -
Therefore the spin orbit hamiltonian is: 

-



In the description of atomic and molecular spectra, the spin angular momentum 

operator is defined as: 

s -
J_~o 
l'k-

derivation of the Thomas factor is one of the strengths of the fermion equation, which as we 

have argued does not suffer from the negative energy problem of the Dirac equation. 

and assume that: _ (tor) A 0 --
so: 

~b~t .!(_ cr- . f f 6' . f + -(to~ - -4 ") J 
~(.,. 

In the derivation of spin orbit coupling and the Thomas factor the first p is regarded as an -
operator and the second pas a function. In the d~rivation of the Darwin te~ both p's are -
regarded as operators, defined by: 
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with expectation value: 

(i? - f*! t &. -(1!0 
Therefore the Darwin term . b . IS o tamed from: 

1-l·n1 ~ \ 
1

(a- · (-if'i_)cf!. · (-d;y_ )) f -C10 
~\'\.... v . 

and is a quant h . urn mec antcal phenomenon with no classical counterpart. 

From Eq. ( \\\ ): 

\i-ncf ~-£~ · 'J_ f ~:- ~)f -C11l) 

and the fist del operator 'J - operates on all that follows it so· 

~")~ i ~ -~ £ . 1 ( l ~ . 5[ 1). -( ll~) 
'+V\- (.., 

The Leibnitz Theorem is used as follows: 

Therefore: 



q~nf - -zf'"l 0 -~-r 0 . '!_ 1 -
- (,,~ ----0 -

~V\- 0 . 

f~(!·':2f) -\- 6'· -
Usually the Darwin term is considered to be: ";;} 

-e__t ~-'if~ ·1 
4-h-- 'l c.- "'l -{H€ 

- -
so: + f \]~1 -(ll~ 

5.3 NEW ELECTRON SPIN ORBIT EFFECTS FROM THE FERMION EQUATION 

On the classical standard level consider the kinetic energy of an electron of mass 

m and linear momentum p: 

and use the minimal prescription ( 5.b ) to describe the interaction of an electron with a 

As discussed in earlier chapters the vector potential can be defined by: 
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A 

where the orbital angular momentum can be defined as follows: 

~ ·.(!x~):c~·~x.f 
-

This analysis gives the well known hamiltonian for the interaction of a magnetic dipfl 

moment with the magnetic flux density: 

- .e L·~ - -
)th -

The classical hamiltonian responsible for Eq. ( \). \.r) is: _v ) - ( \;) s\ 
~h-=- -3.-(f.A \-A·, J 

d.~ - -

which can be written in the SU(2) basis as: _fl _o • _f)._(\ d:_~J 
(-"'·_oo·_A +o· / ~\ -=- - >- u { 

"\ \ :ln... 
Using Pauli algebra: - f/<-tl A A + ~ 0 • 

- f . o ~ 
c) • -• ,.--

- {t;n) -__... -



__. 

and the same result is obtained b ecause: 

- - (l)_ll) 

-r- £1-x.r)~ 

in which: \ C) • ( 0 . \ - 1. - ( t..s:>) 
~-- .--.. -
( 

From comparison ofthe real and imaginary parts ofEqs ( ld.() and ( \3J. ): 

f" ~-=- ~(;_·f ,.~-~-b~·!::xt1) 
in which: - ( l.S4-) 

~ · ~ "' f} - ~ · ~ ·' · .a +- £ · f ~ · I ")<:_ A 
- {tJ.s:) 



A l. ' ~X( .. \ 
.-.:::-I -r--- ~ • rx.r 0 

\ • - d.. - -• - ~- - - (tu) r- -
Therefore we obtain the important identities: 

-L . ~X 1L- (t!>;) 
~ f\ ":!-

\ o- () - -• () - . -c 1>8) - '"'A f~A { • f 0'· 
0 - -• - -- -

The hamiltonian ( \~)can therefore be written as: 

o·l ().\--x.A ~-~~·l. - __. 

_(\3~ 
Finally use eqs. ( \ ~ \ . ) and ( ~~ q ) to find: 

~\ I = ~ ~ • k_ ( ~ • )?_ 
d,th 

~ .{b 
-0 -

o·f' - - ... 
.... ( ') -

--
It can be seen that the well known hamiltonian responsible for the Zeeman effect has been 

developed into a hamiltonian that gives electron spin resonance of a new type, a resonance 

that arises from the interaction of the Pauli matrix with the magnetic field as in Eq. ( \ 4o ). If 

the magnetic field is aligned in the Z axis then: 

~7_ ~ l ~ ~J ~c\~9 
and the electron spin orbit (ESOR) resonance freqqency is: 

L -
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This compares with the usual ESR frequency: ( c\ 
cv -=- .. eJL · - \ '+~) 

,-

from the hamiltonian derived already in this chapter from the fermion equation. 

The ESOR hamiltonian contains a novel spin orbit coupling when quantized: 

.,_ 3-. ~ . ~ !!: . !:_ 1· - (\4-Lt) 
)~ 

in which the total angular momentum J is defined by the Clebsch Gordan series: 



Eq. ( \'+\.r-) was first derived in UFT 249 and is different from the well known ESR spin 

~ L. B -t \S . L -.et E: · ~ -=- - ~ !' .JL_ 
- ~ - ~ - - ~ - ()1''1- ,."1 

)t~- ( t.S/ 
It was derived using well known Pauli algebra together with the fermion equation and 

hamiltonian: 

potentially gives rise to many useful spectral effects. 

For chemical physicists and analytical chemists therefore the most useful format • 

and a few examples have been given in this chapter of its usefulness. In ECE theory Eq. ClS'l ) 

has been derived from Cartan geometry and by using the minimal prescription. The fermion 

equation as argued is the chiral Dirac equation without the problem of negative energy, which 

to chemists was never of much interest. In chemistry the subject is approached as follows. 

By regarding 0 as a function rather than an operator this term can be developed using 

Pauli algebra as follows: 



For a uniform magnetic field: - ( t54-) 

- - J< (~X~. i_ + i • g_ Xi - (t, 
+ \ ;~ (~ ~ ~; )( _f + ! X & X~- f. 

"'- ~ . l -(1 ~ By regarding p as a function: -
-

so the hamiltonian becomes: 

H ,J; ~ - >- h . ! \ ~ T :lrh 

At this stage p is regarded as an operator so the second term on the right hand side 

of eq. ( \57) does n~anish. The use of p and ~ ltts functions or operators is arbitrary, 

and justified only by the final comparison with experimental data. From Eqs. ( IS'7) and -( \ )l;-) the hamiltonian can be written in the format used in chemistry 

\~ ,.L ~ (- ~ ~ ·l - {t ~ . ! ) f 
t·\ _ d: ~ ( ~"'-\- ~~) f _ (ts~) 

d""-



The total angular momentum is conserved so Eq. ( \ 5~ ) can be written as: f 
'\ "' J - .e ~- -s . ~ r \ "\ ~ ~ ~L -- --

where: 

s ) \ L- ~I - .. ) 

from the Clebsch Godan series. 

The conventional spin orbit term emerges as described earlier in this chapter from 

another

1
term of the :ltonian: 6" • ( f _ R. Aj f ~ • ( f _ € ~ j + · _ (!b /'1 

\~ - ·.- - - / -- "') - -
5o ~~C--

in which the first pis described as an operator but in which the second pis a function, giving -
the spin orbit term: 

So the complete ESR hamiltonian is: 

L·iS -
in which the spin orbit coupling constant is: _(\tY 



Fi;ly~o:S*L:ota~~'(:~b + ~-- L(l+ 0- s( S + 0) 1 
_. - --s: - (tb~ 

The above is the very well known conventional description of ESR in the 

language used by chemists, and is a description based in ECE theory on geometry. In ECE 

theory it can be developed in many ways because it is generally covariant while the obsolete 

standard description is Lorentz covariant. 

However, several new spectroscopies can be developed using a well known Pauli 

algebra but one which seems never to have been applied to fermion resonance spectroscopies: { 0 
_ , ()' . r ( < . o +- \. (}' · !::_) - IU 

~ . ~ ~ ~ :. :(;. ~+ ,·E ~ ~~ tt) _(It~ 
£:.·ti- ("}~ ~ 

For a uniform magnetic field: 

F\ 0 - ( ~~ %) 
( • 

r-- -
so: 

A \ o . l ~- a_~i _(\l~ 
- -- -

~ 
• ). ___. 

( -
and 

'\ X A -(rt~ 
A _L r . f o· - --

t) f )<_ ":_) -- -• 
.,--. ( -

as in note 250(7) accompanying UFT 250 on www.aias.us. Using these results it is found 

that: 



Using Eq. ( \\ \ ) .c • lOr a umform m . P\ ~ ( -=- j_ ( ~ •:U~ ~l~i~es ~ _L ( f ( f • ~) _ \) 1\ 
- - ;;t - _) - J. ~ ~ - ~ 

. . -(tt~) 
givmg a novel spin orbit ham"lt . . I oman m the useful form. 

~I 1 ~ 6: §: • ( ~ - J-J (;_ . ~)) ~ . h 1· ~ { n9 
( . 

with the normalization: 

Using the result: 

~ · ~ f ~i1 (J(S+~-L(L+) -S(S+~t 
. d. . - C n6) 

the energy eigenvalues of the hamill . . . oman are: 



as in note 250(9) accompanying UFT 250 . on www.mas.us. 

In spherical polar coordinates: V . f1 _l ( ' L~ ~ <St~t/ cos;: _ (c~ 

1 .,. , S'"a Sil\. r 
. 'Z -=- ( cos e 

and mtegration of a function over all space means: 

r J t-r ~ 4~~ ~e:o foGbi r J $'"B U dB if. ~{n~ 
If the magnetic field is aligned in the Z axis th . C . en m artesian coordinates: 

E;_ • ~~ .:. • i ~ 0 ?.. ~ <. ~) -{!!?Ill 
( ~ t-Y"l+'Z :~ ') 
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In spherical coordinates: 
) 

~ ,- ") 

'~? -t '/) t-6 
so: 

It is seen that this part of the hamiltonian is r dependent and must be evaluated for each wave 

function t . The only analytical wave functions are those of atomic H, so computational 

methods can be used to .evaluate the energy levels of Eq. ( \ ¥5) for the H atom. The results • 

are given in UFT 250 on www.aias.us and summarized later in this chapter. 

Consider now the hamiltonian: A 
_ _g__ lo-.~ ~·6._ -r£-_ 

:l.~~-. l -

~\ i+u~tize~ f;: -t ( ~ • )! 6' -A t ~. B_ ~. ~1 
-(tn) d.r,... l 

Note that: 

-Ct ~rD ~~(f(_ \j - ~ '( J 
{ ~ • - -• - -'(" --- ~f 
r- r-- l 

\ 

where the radial unit vector is defined as: 
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From Pauli algebra: . ) ( ~ () l 
0 • A = ;:: . I - (!_ . _a_- t ~~ . ~X A ~ ,, ___ --:)~ - ( 

and for a uniform magnetic field (t"'t) 
A J_~X\ -- d.- - -

in which: 

A 
(t q~) 

~ - () 
• 

,......._ 

it follows that: . lS . \ 0 • r-x A -{10 
A -- -0 - -, -- - d 

{ 

Using Eq. ( ["\\)it follows that: \1 ( ~ hJ 
J_ ~~A = ~ ( \l, - ~< c~ · ~-~- ~, 

(" 

and that: 



Recall that the conventional development of the hamiltonian is well known: 

H1 ~ t(t ( '1 ·(~f) +-A· Y-cf -6oj 
_ -e_~ ~ • ~ x{fitf) t fl x'J.f · 

-:c - J ~ . 1 +- ,·i ( 'J> fr) f + } '!_ 1· fl 
~~ 

and misses the information given in Eq. ( \ '\ '\ ) .. 
.-

As in note 251(2) on W\Vw.aias.us It is possible to define three novel types of 

hamiltonian: 



~I+ --e_~ 0 -- --d_"" 

l-bf 
- -e_{:' () 

-
d..~ 

H-> f ":c 

~ (). 

d.~ 

whose energy expectation values are: 

r: ~ - 4_ 
L: \ d..,.,.. 

-~r - --:;;)n--

./(_ -~t\.. --
with the Born normalization: 

-1 !< r -(~o ~ • ~I 

• lS \. f0J_ (~o~) 
~' . 

(~o) 1 ~~ () .L -

f t £_ • ~ I + ~'1 - ( )_o0 
cj f §:_ • ~ I f J:fi-- (~ ~ (Jo~) 
f Jf. ~ • ~ ~ • L f ~-c - ( ~j 

1_ -( )o-) 
These are developed in UFT 251 for the hydrogenic wavefunctions, giving many novel results 

ofusefulness to analytical chemisty. 

The use of well known Pauli algebra in a new way is illustrated on the simplest level 

in UFT 252 with the kinetic energy hamiltonian itself: 1 -[ ~o\{) 
in which the Pauli algebra is: 



-1 !< 

0 . ~ 
~ j__ ( ( . f t i !:" . ~) - ( d_c~ 

J. r- -
'( . - -

Therefore: \ / ( • p + llf • h)(~. f t- I 6" • L) 
v. ~ ~·~ ~ -'}l,_,_ ,_ 
- - - ( 

"} - -- "l L L < - L - l. ~ • - "><- - . 

which can be quantized using: • 
0 

j J -= ::e- ( d ~ - (J 11) 
f ' "f --:- ~(" 

L '}-+ -=- f_) ..e_ (~ + ,) of ) !::-''f.. L rf -=- ~·f f ) 
~ . ~ t -:. r ( ~ ( ~ t t) -R_( e t t') - s ( s + t)) f ' 

:) 

Therefore there are results such as the following which are instructive in the use of operators 

in quantum mechanics: 

As shown in detail in UFT 252 the hamiltonian ( d C> g) ~an be developed as: 



-1 !< 

where the wavefunctions are the spherical harm 0 omcs: 

J_~+:L 
d-( .( 

-L",)t:l) 

~ ~ y~ -{dtJ) 

The analysis gives two n 

and 

[ J- ~ :[_ (~ (j +~- ~(~ +0 _,s(s+0 1 ~-? f d_ ~ 
ci~ ( ) ho h - ~tS' 

w Ic are evaluated by computer in UFT 2520 

Si 
0 0 

mllarly the hamiltonian quadratic in the potential: 

can be developed as in UFT 252 0 lq \. . , usmg Eqo ( \ ) as: 
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H s + ~ ~? t~ . ( J(' -cos :lB) 1 -{ Jt~ 
tVh 

again giving novel types of spectroscopy. 

\T\heh:iltonian_L !:_ • ~ { \ + d-~) £ • J_ + _ ( "J10 
\1'\ ~~ - ~~~ 

There are several terms in this equation that can be developed as in UFT 252. For example: 

l~ ~ i - -e ~ ~ ;_ . ! l ~ ;_ ·J_ +) 
4~ (... < -Cd..Jt) 

in which: 

;_ . s_ f --,· r ( ~ - c~~)) 

So the hamiltonian gives: 
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which give observable new fermion resonance spectra. 

four hamiltonians: 

H,o"f 
l1 \\ ef ~ 

H tl1.,. 
\~ ~~ f .,_ 

and these are evaluated systematically in UFT 252 giving many new results. 

Finally in this section the effect of gravitation on fermion resonance spectra can be 

evaluated as in UFT 253 using the gravitational minimal prescription: 

~ ~ \.:: 1- ""- '£ - (lJ a) 

where the gravitational potential is: 



-1 fc 

where G is Newton's constant and where "£ is the gravitational potential. Here M is a 

mass that is attracted to the mass ofthe electron m. Vriosu effects of gravitaton are developed 

in UFT 253. 

5.4 REFUTATION OF INDETERMINACY 


