
CHAPTER FIVE : THE UNIFICATION OF QUANTUM MECHANICS AND 

GENERAL RELATIVITY 

The standard physics has completely failed to unify quantum mechanics and general 

relativity, notably because of indeterminacy, a non Baconian idea introduced at the Solvay 

Conference of 1927. The current attempts of the standard physics at unification revolve 

around hugely expensive particle colliders, and these attempts are limited to the unification of 

the electromagnetic and weak and strong nuclear fields, leaving out gravitation completely. ·so 

it is reasonable to infer that the standard physics will never be able to produce a unified field 

theory. In great contrast ECE theory has succeeded with unifying all four fundamental fields 

with a well known geometry due to Cartan as described in foregoing chapters of this book. 

Towards the end of the nineteenth century the classical physics evolved gradually into 

special relativity and the old quantum theory. The experiments that led to this great paradigm 

shift in natural philosophy are very well known, so need only a brief description here. There 

were experiments on the nature of broadband (black body) radiation leading to the Rayleigh 

Jeans law, the Steffan Boltzmann distribution and similar. The failure of the Rayleigh Jeans 

law led to the Planck distribution and his inference of what was later named the photon. The 

photoelectric effect could not be explained using the classical physics, the Brownian motion 

needed a new type of stochastic physics indicating the existence of molecules, first proposed 

by Dalton. The specific heats of solids could not be explained adequately with classical 

nineteenth century physics. Atomic and molecular spectra could not be explained with 

classical methods, notably the anomalous Zeeman effect. 

The Michelson Morley experiment gave results that could not be explained with 



the classical Newtonian physics, so that Fitzgerald in correspondence with Heaviside 

suggested a radically new physics that came to be known as special relativity. The 

mathematical framework for special relativity was very nearly inferred by Heaviside but was 
I 

developed by Lorentz and Poincare. Einstein later made contributions of his own. The subjects 

of special relativity and quantum theory began to develop rapidly. The many contributions of 

Sommerfeld are typically underestimated in the history of science, those of his students and 

post doctorals are better known. The old quantum theory evolved into the Schroedinger 

equation after the inference by de Broglie of wave particle dualism. Peter De bye asked his 

student Schroedinger to try to solve the puzzle posed by the fact that a particle could be a · 

wave and vice versa, and during this era Compton gave an impetus to the idea of photon as 

particle by scattering high frequency electromagnetic radiation from a metal foil - Compton 

scattering. 

The Schroedinger equation proved to be an accurate description of for example 

spectral phenomena in the non relativistic limit. In the simplest instance the Schroedinger 

equation quantizes the classical kinetic energy of the free particle, and does not attempt to 

incorporate special relativity into quantum mechanics. Sommerfeld had made earlier attempts 

but the main problem remained, how to quantize the Einstein energy equation of special 

relativity. The initial attempts by Klein and Gordon resulted in negative probability, so were 

abandoned for this reason. Pauli had applied his algebra to the Schroedinger equation, but 

I 
none of these methods were successful in describing the g factor, Lande factor or Thomas 

precession in one unified framework of relativistic quantum mechanics. 

Dirac famously solved the problem with the use of four by four matrices and 

Pauli algebra but in so doing ran in to the problem of negative energies. Dirac suggested 

tentatively that negative energies could be eliminated with the Dirac sea, but this introduced 



an unobservable, the Dirac sea still has not been observed experimentally. Unobservables 

began to proliferate in twentieth century physics, reducing it to dogma. However, Dirac was 

famously successful in explaining within one framework the g factor of the electron, the 
I 

Lande factor, the Thomas factor and the Darwin term, and in producing a theory free of 

negative probabilities. The Dirac sea seemed to give rise to antiparticles which were observed. 

The Dirac sea itself cannot be observed, and the problem of negative energies was not solved 

by Dirac. 

It is not clear whether Dirac ever accepted indeterminacy, a notion introduced by 

Bohr and Heisenberg and immediately rejected by Einstein, Schroedinger, de Broglie and· 

others as anti Baconian and unphysical. The Dirac equation reduces to the Schroedinger and 

Heisenberg equations in well defined limits, but indeterminacy is pure dogma. It is easily 

disproven experimentally and has taken on a life of its own that cannot be described as 

science. Heisenberg described the Dirac equation as an all time low in physics, but many 

would describe indeterminacy in the same way. In this chapter, indeterminacy is disproven 

straightforwardly with the use of higher order commutators. Heisenberg's own methods are 

used to disprove the Heisenberg Uncertainty Principle, a source of infinite confusion for 

nearly ninety years. One of the major outcomes ofECE theory is the rejection of the 

Heisenberg Uncertainty Principle in favour of a quantum mechanics based on geometry. 

The negative energy problem that plagued the Dirac equation is removed in this 

chapter by producing the fermion equation of relativistic quantum mechanics. This equation is 

not only Lorentz covariant but also generally covariant because it is derived from the tetrad 

postulate of a generally covariant geometry - CaJ1an geometry. All the equations of ECE 

theory are automatically generally covariant and Lorentz. covariant in a~wll defined limit of 

general covariance. So the fermion equation is the first equation of quantum mechanics 



unified with general relativity. It has the major advantages of producing rigorously positive 

energy levels and of being able to express the theory in terms of two by two matrices. T.p.e 

fermion equation produces everything that the Dirac equation does, but with major 

advantages. So it should be viewed as an improvement on the deservedly famous Dirac 

equation, an improvement based on geometry and the ECE unified field theory. 

The latter also produces the d' Alembert and Klein Gordon equations, and indeed 

all of the valid wave equations of physics. Some of these are discussed in this chapter. 

5.1 THE FERMION EQUATION 

The structure of ECE theory is the most fundamental one known in physics at 

present, simply because it is based directly on a rigorously correct geometry. The fermion 

equation can be expressed as in UFT 173 on www.aias.us in a succinct way: 
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where the fermion operator in covariant representation is defined as: 
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where f is the energy momentum four vector: 
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The Pauli matrices are defined by: 
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The eigenfunction ofEq. ( .1. ) is the tetrad { 1 - 1 0} : 
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whose entries are defined by the right and left Pauli spinors: 
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This eigenfunction is referred to as "the fermion spinor''. 
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The position representation of the fermion operator is defined by the symbol r 
and is: 
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Therefore the fermion equation is the first order differential equation: 
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For purposes of comparison, the covariant format of the Dirac equation in chiral 

representation { 13} is: 
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is a column vector with four entries, and where the Dirac matrices in chiral representation 

{ 13} are: 

The complete details ofthe development ofEq. ( 1_ ) are given in Note 

172(8) accompanying UFT 172 on www.aias.us The ordering ofterms in Eq. ( 1... ) is 

important because matrices do not commute and f is a 2 x 2 matrix. The energy 

eigenvalue ofEq. ( .1_ ) is rigorously positive, never negative. The complex conjugate of 

the adjoint matrix of the fermion spinor is referred to as the "adjoint spinor" of the fermion 

equation, and is defined by: .f ~. 
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The adjoint equation ofEq. ( i. ) is defined as: 
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where the complex conjugate of \·{has been ¥sed. These equations 1uf.v well known 

counterparts in the Dirac theory { 1 - 10, 13} but in that theory the 4 x 4 gamma matrices are 

used and the definition ofthe adjoint spinor is more complicated. 



The probability four-current of the fermion equation is defined as: 
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and its Born probability is: 

which is rigorously positive as required of a probability. It is the same as the Born probability 

of the chiral representation { 1 - 1 0, 13} of the Dirac equation. In the latter the four current is 

defined as: 
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and the adjoint Dirac spinor is a four entry row vector defined by: 
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It is shown as follows that the probability four-current of the fermion equation is 

conserved: 
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To prove tJfoi result multiply both sides ofEq. ( 1 ) from the right with f : 
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in which E and p are the operators of quantum h . mec ames: 



Eqs. ( 

from which there emerge equations such as: 

Using the quantum postulates this becomes the wave equation: f2 
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whose eigenfunction is fue tetrad ( f ). 
Therefore the fermion equation is obtained from the tetrad postulate and Cartn 

geometry. The tetrad is define~((.\..
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i.e. as a matrix relating two column vectors. 


