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Abstract

The engineering model of Einstein Cartan Evans (ECE) theory allows
the design of electro-magnetic devices under inclusion of resonance e�ects
from space-time. The resonance is enabled by means of the spin connec-
tion which is not present in the standard model of electrical engineering
(Maxwell-Heaviside theory). In this paper models for solving the Ampère-
Maxwell law are developed. Results show that resonances of conventional
Euler-Bernoulli type may be missing but sharp undamped resonances of
other type occur. Some examples for practical realization are proposed.
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1 Introduction

After its introduction in 2003, Einstein Cartan Evans (ECE) theory [1]- [3] has
opened a new view on physics. This new paradigm can be developed by combin-
ing the ideas of Einstein's general relativity with addition spacetime torsion. A
main bene�t of this method is that it is not purely of theoretical and hypotheti-
cal nature but can be applied to real-world problems. The most urgent problem
currently is �nding new sources of energy. ECE theory o�ers to construct new
electro-mangetic energy devices and therefore is of utmost importance for ap-
plied physics and engineering. The ECE �eld equations have been developed
into an easily comprehensible form, the so called ECE engineering model [4]. It
has been shown in several papers of the ECE series [5] how coupling between the
background potential of space-time and electrical or magnetical devices can be
established. This is by resonance e�ects which appear in full analogy to enforced
oscillations. This has already been worked out for the Coulomb law in other pa-
pers [6,7]. In this article we derive resonance e�ects from the Ampère-Maxwell
law which is one of the four fundamental �eld equations of ECE theory.
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2 The resonant Ampère-Maxwell law

The �eld equations of the ECE engineering model are formally identical to the
Maxwell-Heaviside equations, with the di�erence that the latter hold only for a
�at space of special relativity, while the ECE equations are valid for any curved
and twisted space-time. The Ampère-Maxwell law is one of these equations and
reads

∇×B− 1
c2
∂E
∂t

= µ0J. (1)

where E and B denote the electric and magnetic �eld, c is the vacuum velocity
of light, µ0 the vacuum permeability and J an external current density. The
electric and magnetic �eld are related to the magnetic and electric space-time
potentials A and φ by the equations

E = −∂A
∂t
−∇φ− ω0A + ωφ, (2)

B = ∇×A− ω ×A (3)

where ω is the vector spin connection and ω0 the scalar spin connection. These
appear due to the space-time torsion and curvature of Cartan geometry. With-
out this, the above equations would be identical to those of Maxwell-Heaviside.

In this paper we restrict consideration to the electric case, i.e. we assume

A = 0. (4)

Then the magnetic �eld disappears and from Eq. (1) we obtain

∂

∂t
(∇φ− ωφ) =

1
ε0

J. (5)

In the following we assume that all quantities are time dependent. This leads
to (with denoting the time derivative by a dot)

∇φ̇− ω̇φ− ωφ̇ =
1
ε0

J. (6)

Taking an additional time derivative on both sides of the equations then gives

∇φ̈− ω̈φ− 2ω̇φ̇− ωφ̈ =
1
ε0

J̇. (7)

Now we further simplify the problem by omitting the space dependence. Then
the gradient term disappears and we obtain an ordinary di�erential equation
with non-constant coe�cients of the form

ωφ̈+ 2ω̇φ̇+ ω̈φ = − 1
ε0

J̇ (8)

whose Z component is

ωZ φ̈+ 2ω̇Z φ̇+ ω̈Z φ = − 1
ε0
J̇Z . (9)

The equation is symmetric in ω and φ. We restrict consideration to one com-
ponent and the Z index will be omitted from here. To obtain a solution for the
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potential, we need a model ansatz for the spin connection. As a �rst try we
de�ne

ω := ω0e
αt (10)

with a characteristic decay time 1/α which may be positive or negative. Then
we get

ω̇ = ω0 α e
αt, (11)

ω̈ = ω0 α
2 eαt (12)

and Eq. (9) simpli�es to

φ̈+ 2α φ̇+ α2 φ = − 1
ε0 ω0

J̇ . (13)

This is an equation for a damped resonance with constant coe�cients. The
standard form [8] of such an equation is for a function ϕ:

∂2ϕ

∂x2
+ 2β

∂ϕ

∂x
+ κ2

0ϕ = f(x) (14)

with a damping constant β and a resonance frequency κ0 of the undamped
oscillation. By comparison with (13) we have

β = α, (15)

κ0 = α. (16)

The resonance frequency is given in general [8] by

κR =
√
κ2

0 − 2β2 (17)

which in this case is
αR =

√
α2 − 2α2 = α

√
−1. (18)

Obviously the resonance frequency is imaginary, i.e. there is no resonance. The
damping is too high, transducing the system into an overcritically damped state.
One would have to �nd a di�erent ansatz (10) for ω to �nd a real resonance of
the potential.

This example was to show the nature of the resonance equation (13). Now
we return to the original equation (6) which reads when neglecting any space
dependence:

ω̇φ+ ωφ̇ = − 1
ε0
J. (19)

This equation can be solved analytically by computer algebra. The general
solution is

φ =
c− 1

ε0

∫
Jdt

ω
(20)

with a constant c. The solution φ diverges for instances of time where ω has
zero crossings and the numerator of (20) does not go to zero at the same time.
For practical applications of resonance it is required to realize this condition,
for example by a harmonic choice

ω = ω0 cos (αt) . (21)
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Figure 1: Resonances of potential of Eq.(20) with all constants set to unity.

If ω is created by a current of the same phase, we have

J = J0 cos (αt) , (22)

leading to a potential

φ =
c− 1

ε0α
J0 sin (αt)

ω0 cos (αt)
. (23)

This is plotted in Fig. 1.
As a second analytic example we de�ne a current and a spin connection in

form of a Gaussian function:

J ∝ ω ∝ exp (α(t− t0)) . (24)

Then J and the integral over J have the form as graphed in Fig. 2. The potential
goes to in�nity since the denominator of (20) approaches zero, see Fig. 3 (note
the logarithmic scale). The constant c in Eq. (20) signi�cantly impacts the
form of φ, in particular it determines whether there are zero crossings or not.
The constant represents a voltage preset for the timing behaviour of J and ω.
This must be chosen carefully in experiments.

3 Proposed Realizations

In this paper we made a rough approximation by neglecting the space depen-
dence of all physical quantities. Despite of this, a resonant behaviour was found
for the time dependency of a prede�ned spin connection ω and a current J . To
�nd experimental realizations of this situation we have to
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Figure 2: Gaussian current and spin connection, current integral.
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Figure 3: Resonant potential for Gaussian current/spin connection.
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1. de�ne a spin connection

2. de�ne a current

3. provide a voltage collector

within the same location of space. How these have to be arranged to be optimal,
will be subject of future FEM studies of the full vector equation (5) for the
Ampère-Maxwell law. Here we present some ideas how the conditions can be
met.

A spin connection in space can be created by a toroidal magnetic �eld [7].
This can be made time dependent by appying for example an AC voltage to
the toroidal coil. The spin connection will follow the current (more precisely:
the vector potential of the magnetic �eld) instantaneously. An AC current with
the same phase can be conducted through an ohmic resistor in the center of the
toroid, see Fig. 4. It is not clear where to place the electrodes for receiving the
resonant voltage. In the simplest case the voltage is induced in parallel to the
current J , this would give a boost in the circuit of J . Alternatively one could
try to take o� the voltage from conducting plates outside the conductor. Some
possibilities are shown in Fig. 4.

Another, quite elegant, experimental setup could be a �at Tesla coil (Fig.
5). As already shown in an earlier paper [7] the magnetic �eld of a Tesla coil
is inhomogeneous, leading to a non-vanishing spin connection. In this case the
driving current of the coil is identical with the external �driving force� J . It is
expected that this current can be enhanced by resonance e�ects.
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Figure 4: Realization proposition with toroidal coil, with several voltage collec-
tors.

Figure 5: Tesla coil with magnetic �eld lines.
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