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ABSTRACT

It is demonstrated that the Sagnac effect for electromagnetic

and matter waves cannot be explained by a U( 1) holonomy, which gives a

null result. An O(3) holonomy is needed in both cases in order to

reproduce the Sagnac and Michelson Gale effects to high accuracy.

KEYWORDS: Holonomy in the Sagnac effect; O(3) holonomy; non-

Abelian  Stokes Theorem.

1. INTRODUCTION

It is well known that the Maxwell Heaviside field equations

cannot describe the Sagnac effect, which is an extra phase shift observed

when the platform of the Sagnac interferometer is rotated { 1 }. The

same is true for the Michelson Gale experiment { & }, where the rotating
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platform is the diurnal rotation of the earth, and also for the ring laser

gyro { 3 }. The basic reason for the null result from the Maxwell

Heaviside equations is that they are metric invariant and frame invariant {

*b  }, so are unaffected by rotation. Another way of seeing this is that the

phase factor of received classical electrodynamics:

is invariant under motion reversal symmetry (T). Here @ is the

angular frequency of the electromagnetic wave in free space at instant t

and E is its wave-vector at point r. The number d is random,

because the phase in Maxwell Heaviside electrodynamics is defined only

up to a random factor d { 1 >. One loop (e.g. clockwise, (C)) of

the Sagnac interferometer is generated from the anticlockwise (A) loop by

the operator T. This is true when the platform is at rest and so the

Maxwell Heaviside phase cannot describe the phase shift observed in the

Sagnac interferometer when the platform is at rest, because the Maxwell

Heaviside phase is identical for A and C loops. It has been shown

recently that this type of result is true in general in interferometry { 5 - 1’
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> . The Maxwell Heaviside theory does not describe interferometric

phenomena.

The Maxwell Heaviside theory is generally accepted in

received opinion as a gauge field theory invariant under local U( 1)

transformations of the lagrangian ( j \ } of the internal space of the

gauge theory, a scalar space. This view implies that the Sagnac effect

must be described by a holonomy, or round trip in space-time, with

parallel transport using U( 1) covariant derivatives ( t\ }. The

holonomy must fail, however, to describe the Sagnac effect because it is

equivalent to Maxwell Heaviside theory. In section 2 this conclusion is

demonstrated in detail, starting from a generally applicable non-Abel&r

Stokes Theorem. In Section 3 it is shown how an O(3) invariant gauge

field theory applied to electrodynamics reproduces the Sagnac and

Michelson Gale effects, and the ring laser gyro, using a holonomy with

O(3) covariant derivatives. In so doing it is shown that the Sagnac and all

interferometric effects are O(3) invariant, and depend on a phase factor
0)

which is an area integral over the B field ( 5 - 1 o }. The latter is

therefore the cause of all interferometry and related physical optical

effects. This result is also true in the Sagnac effect for matter waves, such



as electron waves, i.e. an O(3) holonomy is needed for the recent

observation of the Sagnac effect { t 2 } in electrons. This result is

demonstrated in Section 4. Finally in Section 5 it is shown that an O(3)

holonomy is compatible with the explanation recently offered by Vigier {

\ ‘ 3 > of the Sagnac effect using finite photon mass.

2. NULL RESULT OF THE U( 1) HOLONOMY IN THE SAGNAC

EFFECT WITH PLATFORM AT REST AND IN MOTION.

For all gauge group symmetries the holonomy results in the non-

Abelian  Stokes Theorem { 1 b >:

consisting of an identity between properties of covariant derivatives D
P

for any gauge group symmetry, including U(1) and O(3). Eqn. ( a ) is

equivalent for all gauge group symmetries to the Jacobi identity { 11 } :



In general the covariant derivative can be written as:

D
,P

‘= -0G

where g is a topological charge ( t e } and where:

Here -iha are the group rotation generators { 1 1 }. For U( 1) we use the

scalar M = -1 { 1\ >. Interferometry is described { 10  > by the phase

factor identity equivalent to eqn. ( 2 ), i.e.:
\

This expression simplifies to:

Y = xx
e ( c4 jip+ Qy  (- qp-;]

- -7

where G-
/“”

is the field tensor for any gauge group symmetry:
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If the gauge group is U( 1) the field tensor simplifies to:

and the expression on the left hand side of eqn. ( 7 ) simplifies to:

The U(1) holonomy for the Sagnac effect with platform at rest therefore

produces the phase factor:

Y

However, in the Maxwell Heaviside theory to which this U( 1) holonomy

corresponds, both A and B are transverse plane waves in free space..- c

Therefore A is perpendicular to the path r. Therefore:

P
/q-AC = O- -( >\a

both for the A and C loops, and there is no observed phase shift when the

platform of the Sagnac interferometer is at rest, contrary to observation ( \ - 3



}. The phase factor ( t 1 ) is invariant under U(1) gauge

transformation and is metric invariant, and so cannot describe what is

usually referred to as the Sagnac effect, the extra phase shift observed

when the platform is rotated { \ - 3 } .

3. DESCRIPTION OF THE SAGNAC EFFECT WITH AN O(3)

HOLONOMY.

The O(3) holonomy is a round trip in space-time using parallel

transport with O(3) covariant derivatives. The internal space of the gauge

field theory is the physical three dimensional space described by the

rotation group O(3) using a complex basis ((l), (2),  (3)) { 5 - to ) . The

latter is based on the empirical existence of circular polarization: the

indices (1) and (2) correspond to left and right handed circularly polarized

waves and (3) is defined {S -lo > by the unit vector algebra:

in cyclic permutation. In the Sagnac effect the O(3) holonomy results in



one for each index (I),  (2) and (3). However, by definition:

so the Sagnac effect when the platform is at rest is described by the phase

factor:

-( >16
(3)

in which A is parallel to the path. The topological charge is defined ( 5 - lo

> by:

(a-l (3)

where A is the scalar magnitude of A- . Therefore eqn. ( \ 6 )

becomes:

in



the left hand side of this equation is a line integral which changes sign on

application of T. The empirically observed phase shift when the platform

is at rest is therefore given precisely by eqn. ( \ g ) to be:

d-2
(3)w 4 c.- - --

I

(0
Theg field component on the right hand side of eqn. ( 18  ) is

generated from parallel transport with O(3) covariant derivatives,

specifically from the commutator { 5 - ‘“} :

In general gauge field theory a gauge transformation is a rotation in the

internal gauge space, a rotation defined by:

where rh@ are the group rotation generators and Aa are angles. In the

O(3) gauge field theory with a physical internal space with basis ((1) (2),

(3)) the rotation in the internal space is a physical rotation, corresponding



to the rotation of the Sagnac platform. This rotation, or gauge

transformation, results in { \$-  } :

whose time-like part is:

where -Q is the angular frequency of rotation of the platform. Using

eqns. ( I1 ) and ( a 0 ) the right hand side of eqn. ( 18 )canbe

written as:
3

x
= -ex r t -

(& -c3 9c
and eqn. ( 23 ) produces { 1 b } the correct phase shift observed

empirically { 1 - 3 } in the Sagnac effect when the platform is rotated:

The Sagnac effect is therefore correctly described by the O(3) holonomy

and is essentially the frequency shift, eqn. ( as ). The frequency shift

is independent of whether the observer is on or off the platform, as



observed { \ ->}, and the area Ac can be any shape, as observed { 1 - 3

}. The correct description emerges from the fact that the internal gauge

space is a physical space and therefore a gauge transformation is a

physical rotation resulting in eqn. ( a3 ), a frequency shift.

4. SAGNAC EFFECT IN MATTER WAVES WITH AN O(3)

HOLONOMY.
a

Recently Hasselbach et al. ( 16 } have observed the Sagnac

effect with electron waves. The phase shift caused by the rotating

platform is the same as that observed with electromagnetic waves, and is

eqn. ( bS ). In this section this significant result is explained using the

same theoretical structure as in section three, i.e. using an O(3) holonomy.
a

The theoretical explanation and experimental result { \ $ } suggests that

the Sagnac effect is independent of the property of the wave being used

for its observation, and should be the same for all matter waves, for

example neutron, atomic and molecular matter waves. This result implies

that the Sagnac effect is determined only by the rate at which the platform

is rotated, i.e. is determined by the angular frequency n.



*,

The theoretical explanation of the effect observed by Hasselbach
a

et al. { a $ } starts with the O(3) invariant energy momentum tensor:

where

QH e r e is the Dirac constant, and m0 the rest mass of the particle

concomitant with the wave. In condensed notation both p
/c”

a n d  i>

are governed by a gauge transformation:

and similarly for w
P’

For rotation about the Z axis we obtain the

result:

which is the same as:



The holonomy difference with platform at rest for anticlockwise (A) and

clockwise (C) loops is:

fu z

where, from eqn. ( 27 ),

The extra holonomy difference due to the rotating platform is, from eqn.

(30):

giving again eqn. ( a 5 ), as observed.

5. SAGNAC EFFECT FOR PHOTON WITH REST MASS.

The explanation of the Sagnac effect for the photon with rest

mass is the same as that for the electron in section four and is compatible

with the explanation given by Vigier { 13) of the Sagnac effect and

Langevin paradox using finite photon mass. However, Vigier did not use



gauge theory but rather a kinematic explanation. The gauge theory used

in this paper has the advantage of demonstrating the compatibility of
(3)

photon mass with the B- field. Both can be used as an explanation of
(3)

the Sagnac effect. The B field has the additional advantage of being the

touchstone for the explanation of all interferometric effects through the

O(3) invariant equation ( i !J ); and also of providing an O(3) invariant

explanation of the Aharonov Bohm effect { I 5 }.
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