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A method is devised for the measurement of basic single molecule cross-correlation functions (eel's) such as <~(t)toT(0)) 
or (t~(t) OT(0)L Here It) is the centre of mass linear velocity, tO the angular velocity and lithe dipole moment of the same 
molecule. The appearance under electric field treatment of these eel's in the laboratory frame is demonstrated using both 
computer simulation and analytical theory. They are inevitable consequences of the induction in a molecular liquid of bire- 
fringence. Conversely the experimental technique of electric field induced birefringence may be used to measure them di- 
rectly. 

Introduction. It is possible to measure with great 
accuracy a minute birefringence induced in a molecu- 
lar liquid. The birefringence may  be induced with an 
electric field, and information obtained in this way 
about the molecular dynamics of  the liquid or liquid 
crystal states [ 1 ]. It is partly the purpose o f  this let- 
ter to show that the theory of  electric field induced 
birefringence is deficient in at least one respect: it 
ignores the appearance in the laboratory frame of  sin- 
gle molecule cross.correlation functions [ 2 - 4 ]  (ccf 's)  
exemplified by (v(t)toT(0)) and (u(t) lIT(0)). Herevis 
the molecular center-of-mass linear velocity, to its angu- 
lar velocity and Ix the net molecular dipole m o m e n t .  
These ccf's we reported here using computer  simulation 
of  liquid dichloromethane at 269K treated with a strong 
electric field [5],  in thez  axis of  the laboratory frame, 
energetically equivalent to pE/kT = 2.8. They are also 
described analytically with a rigorous approximation 
of  the stochastic LiouviUe equation developed by  
Grigoloni [6].  In well-defined limiting cases it is pos- 
sible to anticipate liquid crystal type behaviour [7] 
based on the existence of  these ccf's alone, without the 
use of  a "director"  potential. In the Markov limit [8],  
an equation is derived linking the cross-correlation 
function to the angular velocity (or rotational velocity) 
auto correlation functions (acf 's)  II and / to the ap- 
plied electric field. This equation shows that induced 
birefringence always results in the appearance of  ob- 
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servable ccf 's  in the laboratory frame, whatever the 
strength of  the applied electric field. This is an original 
result and provides a method for the experimental mea- 
surement of  these new ccf 's  using conventional Kerr 
effect apparatus [1],  preferably at far infrared-fre- • 
quencies [7,8]. 

Analytical theory. A brief synopsis of  the analyti- 
cal results is given in this section. These are based on 
the stochastic LiouviUe equation [6] : 

2 (t) = .C0 A ( t ) ,  (1) 

where A is a column vector of  variates [8],  and -C0 the 
Liouville operator. If  we want an expression for Cv¢ o 
= (v(t)toT(o)) then: 

A [ I)(t)] 
= L ~ ( t ) J '  

and similarly for (I)(t)I~T(0)), or any other non-vanish- 
ing ccf. In the presence of  an electric field (v(t)toT(0)) 
4= 0; (v(t) liT(0)) 4= 0. This is confirmed in this letter 
by computer  simulation. [The accepted dynamical 
theory of  induced birefringence assumes implicitly that 
these ccf 's  vanish for all t, i.e. uses A - to (t).] 

Using projection operators Grigolini et al. [9] have 
reduced eq. (1) to a form suitable for the calculation 
of  correlation functions: 
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t 

6 (t) = k( t )C(t )  - f (t- r)C(r) d r .  
0 
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When considering the ccf between I) and {~ we have: 

[ (I)(t) eT(0)) <l)(t) ~T(0)> ] 
C(t) = L <m(t),T(0)> <o,(t)mT(0)>J ' 

[0 0] 
k(t) = ico 1 , co I = pE/I ,  

0 1 

where I is the moment of inertia of the molecule, as- 
sumed for simplicity to be a spherical top. In the 
Markov limit: 

,= F*o° *o 3, 
L,coo ,cocoJ 

(2) 

where ¢bo, ~oco = @co o and ~co co are friction matrices. 
The matrices fi)(t) BT(0)), <re(t) o T ( 0 ) ) ,  t~o u and ~co co 
are diagonal; and the matrices (I)(I) (oT(0)) = (re(t)uY(0)), 
and~oco = ~coo are off-diagonal in structure, with ele- 
ments in the x, y and z axes of the laboratory frame. 
For example, the computer simulation results show 
that, to a good approximation: 
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Here, CXY(p) is the Laplace transform of CXY(t). 
CXX(p) and CZZ(p) are Laplace transforms of the 
linear velocity acf ± and II to the electric field. (v 2) and 
(0 2) are the mean square velocities ± and II to the field. 
There are similar definitions for the angular velocity in 
eq. (4), where q~xy is the mixed friction coefficient. 
Note that eq. (4) implies that CXY(t) vanishes in the 
absence of birefringence. The ccf's in eq. (4) are de- 
fined by 

C X X  (p )  = D -1 <co2)(p + cxox), 

CXX(p)  = D - l ( v 2 x > ( p  _ icol + q~xx), 
x y  - 1 2 xy  

Coco(p ) - D (oo~ }~b~co 

(s) 

(6) 

(7) 

D = (p + xx x x  (d~xY ~ 2 
(Duo) (P  -- icol + (/)cow) + .Toco.  , 

%z cZZco(P) = (co2z)/(P - ico 1 + q~co), (8) 

zz  _ 2 zz 
Coo(P) - <u9 )/(P + ¢~,o )" (9) 

Similar results can be obtained for (u(t) I~T(0)). The 
analytical results (the real parts of the inverse Laplace 
transforms of  eqs. (5)-(9))  are compared with the 
computer simulations of the equivalent correlation 
functions in figs. (1)-(3). 

1 

Coco(t) = Ccoo(t) = crY( t )  0 , 

0 0 0 

(3) 

where CXY(t)is an observable, scalar, ccf. Eq. (3) 
shows that the dominant elements of Cow (t) [fig. (1)] 
are the (y, x) and (x, y )  elements, which are mirror 
images. By solving eq. (2) using Laplace transforma- 
tion, and by comparing elements in the resulting super- 
matrix equation, a series of relations is obtained be- 
tween the ccf Co xy (t) and the angular and linear veloc- 
ity acf's in the x and z direction of the lab. frame. The 
most significant of these is, to a good approximation: 

<4> c ~ p )  <4> 
co~y (p) - 

C5 zz CL(p) ¢)ow 

<co2) cco%(p) <co~> 
(4) 

(~uXy zz xy cco~,(p) ¢~,,~ 
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Fig. 1. sim,,l,tea and a,~alyti~,l- ~ ( t )  and c~X(t). - -  (1) yx  
Cvco(t), samulated; - - -  analytical theory (r.h. scale). (2) As 
for (1), xy  Cow(t) .  Ordinate: normalized ecf; abscissa: time/ps. 
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Fig. 2. - -  (1) {Wz(t)~z(O))/<~2z>; (2) <wx(t)wx(O)/<~>, the 
simulated angular velocity acf's II and .L to the electric field. 
- - -  (3) and (4); As for (1) and (2) respectively, analytical 
theory. Ordinate: normalised acf; Abscissa: time/ps. 
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Fig. 3. As for fig. (2); linear, centre of mass, velocity acf's. 

Results and discussion. Eq. (4) shows that the 
hitherto unmeasured ccf coXy(t), up to now unrecog- 
nised in the theory of  birefringence, can be observed 
with conventional or slightly modified, Kerr effect ap- 
paratus [ I ] .  To check the analytical results a computer  
simulation of  the appropriate correlation functions 
has been carried out  on 108 CH2C12 molecules at 296 

K in the liquid. The pair potential was modelled simply 
with 3 sites [5],  and built up of  3 × 3 Lennard-Jones 
and partial charge interactions with the parameters: 
e/k(Cl-Cl) = 173.5 K; e/k(CH2-CH2) = 70.5 K; 
o (CH2-CH2)  = 3.96 A; o(C1-C1) = 3.35 A; qCl = 
-0 .15  iel;qCH 2 = 0.30 [el. An electric field was ap- 
plied in the z axis exerting a torque - l i X  E on each 
molecule. The acf 's and ccf 's of  interest were then 
built up, over about 3000 time steps of  0.005 ps, using 
standard running-time algorithms [8]. The ccf 's  from 

the computer  simulation (and theory) are normalised, 
e.g. 

c~XY = (Ox(t)Coy(O))/(o2)1/2(6o2 )1/2 .  

They should vanish at t = 0: if they do not then this 
is merely an indication of  the statistical noise level in 
the computer  simulation, e.g. fig. (1). 

The analytical and simulated cf 's  were compared 
by fitting the simulated CZZ(t)  giving zz ¢~to = 6.4 THz; 
w 1 = 6.0 THz. For simplicity it was then assumed that 
~bwwzz = ¢wwxx = ezz = ¢xx; and the other cf 's  generated by 
varying ¢oxY~ only. Figs. ( 1 ) - (3 )  are for ¢0 xy = 9.0 THz. 
Both the analytical and simulated cf 's  in figs. ( 1 ) - (3 )  
are produced self-consistently. For these parameters 
the analytical ccf 's are greater in normalised inten- 
sity than the simulated ccf 's  (-+0.35 cf. -+ 0.07), and 
less oscillatory, (because of  the Markov structure of  
q). The birefringence in the simulated and analytical 
angular velocity acf 's  is in the same sense [fig. (2)],  but 
this time the analytical result is the smaller in mag° 
nitude. In fig. (3) there is a small (but real) birefrin- 
gence in the simulated linear velocity acf, which, as t 

0% is in the same sense but much smaller, this time, 
than the Markov analytical result. 

Overall, therefore, both theory and simulation point 
clearly towards the way to measure CXY(t) and 
cYoX(t). We note to finish that: (i) the analytical 
theory used here is the simplest possible (with no time 
dependence for ~), and can be improved with the 
methods of  Grigolini et al. [10].  (ii) An entirely anal- 
ogous theory can be constructed for (u(t) ~(0)).  By 
computer simulation the only non-vanishing element 
is (Vx(t)~z(O)). In consequence, the birefringence in 
(l~(t)" li(O)) is opposite in sense to that in (ta(t)tb(O)) 
for the same z axis electric field. This can be picked 
up directly and accurately using polarised probe car- 
cinotrons as far as intra-red birefringence at different 
spot frequencies. (iii) In the limit (w 1 -> O, q)o xy ~ ~) 
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the anisotropy in the acf 's  becomes very large, the 
situation, generally speaking, encountered in an aligned 
nematic condit ion [7] .  (iv) There is a relation between 
601 and ¢oxY~ because 601 must vanish when ~t~xY~ van- 
ishes and vice versa. (v) It is possible to extend the 
simulations to the "exper imenta l"  limit laE/kT'~ 1 
with the "difference technique" developed by  Heyes 

[111. 
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