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ABSTRACT 

Correlation functions are computed in the laboratory frame for the 

molecular coriolis and centrifugal forces with respect to a frame of reference 

static in the laboratory. The molecular Coriolis and centrifugal forces in 

this laboratory frame result from a combination of the molecule's rotational 

and translational motion, and correlate statistically these two types of 

motion. They are not usually considered in the theory of decoupled 

rotational or translational diffusion. Correlation functions are computed for 

the enantiomers and racemic mixture of liquid bromochlorofluoromethane, and 

for dichloromethane liquid subjected to a strong, uniaxial, electric field of 

force in the z axis of the laboratory frame. 

INTRODUCTION 

This paper describes a computer simulation of correlation functions of 

inter-molecular Coriolis and centrifugal forces ir. the laboratory frame of 

reference. The Coriolis force Cl,21 is proportional to x(t) x e(t), where 

v,(t) is the molecular centre of mass velocity and g the angular velocity 

of the same molecule. Therefore it is a natural measure of the 

statistically interdependent nature of molecular rotation and translation. 

The time-correlation function of the Coriolis force is: 

C &t) = < y, (t) x 8 (t) . x(o) x 8 (0) > 

and also exists in the laboratory frame of reference for all molecular 

symmetries. C Car is therefore a natural method of expressing, directly in 

the laboratory frame, the statistical correlation between molecular rotation 

and translation, because it correlates in this frame a real force, the 

molecular Coriolis force at t = 0 and a time t later. Coriolis forces have a 
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real effect on measurable spectra, and this is well known in the quantum 

theory of vibration-rotation coupling. In this case they arise from the 

quantised vibrational movement of atoms in a molecule superimposed on the 

quantised rotational movement of the complete molecule. However, there are 

also classical intermolecular Coriolis forces of the type $ x t, due to the 

resultant centre of mass traLlslatiou of the complete molecule superimposed on 

its own rotation, and these do not seem to have been treated in anything like 

as much detail in the context of molecular diffusion. It is difficult co treat 

these forces quantum mechanically because they involve the centre of mass 

translation of the whole molecule. Their computation in this paper is 

therefore restricted to classical mechanics, using computer simulation to solve 

the classical equations of motion for an assembly of 108 molecules. 

The paper is arranged as follows. 

Section 1 is a discussion of the nature of the Coriolis and centrifugal 

forces in the context of molecular rotation and translation. The correlation 

function CCor(t) is analysed in terms of its component correlation functions. 

In this context the treatment is extended to the statistical time-correlation 

function of molecular centrifugal forces in the laboratory frame of reference. 

Section ? is a discussion of the algorithms used and the conditions under 

which the computer simulations were pursued. 

Section 3 is a discussion of some results, in terms of the time-correlation 

functions and their spectra. Results are provided for the (R) enantiomer and 

racemic mixture of bromochlorofluoromethane and for liquid dichloromethane 

subjected to an intense z-axis electric field, which removes the isotropy of 

the molecular ensemble with respect to parity inversion in the laboratory frame 

of reference. 131 The statistical cross-correlation between molecular 

rotation and translation is not usually considered in the theory of linear 

response and the Onsager reciprocal relations. It is pointed out, de facto, 

that the theory of 'rotational' diffusion does not describe the molecular 

Coriolis and centrifugal forces correlated statistically in this paper. 

Section 1: The Origin of the Molecular Coriolis Force, 2m&(t) $(Q 

and Centrifugal Force mu(t) x (y(t) x x(t)). 

Consider an inertial frame of reference defined by the frame of the three 

principal molecular moments of inertia. A laboratory frame of reference then 

rotates and translates with respect to this molecule-fixed frame, and is 
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therefore a non-inertial frame of reference, with respect to the molecule- 

fixed frame. It follows that Newton's equation of motion for the molecule 

in this non-inertial frame, the laboratory frame, is: CSI 

(2) 

where J$ is the translational acceleration of the one frame with respect to the 

other; the energy U is defined by the Lagrangian: 

2 
Lo=;"" -u 

0 (3) 

expressed in the original inertial molecule fixed frame; m is the molecular 

mass, x is the molecular centre of mass velocity in the laboratory frame, 

t is the angular velocity of the one frame with respect to the other, and 

according to the definition adapted above for the molecule fixed frame, is 

also the molecular angular velocity in the laboratory frame; and 5 is the 

position vector of the molecular centre of mass with respect to the origin of 

the laboratory frame. In eqn. 3 x is the centre of mass linear velocity 

defined with respect to the original inertial frame of reference, i.e. the 

molecule fixed frame, and L 
0 

is the Lagrangian in this same frame. 

Note that theories of decoupled translational diffusion simply write 

eqn (2) in the laboratory frame as the equivalent of : 

m dx 

x 
=E 

with no account taken of the terms involving molecular angular velocity, & 

(4) 

in the laboratory frame. 

The molecular Coriolis force in the laboratory frame of reference is an 

example of a real force neglected in theories both of decoupled rotation and 

of decoupled translational diffusion 151. It is the term 29 x q in 

eqn (2). In so far as the theory of rotational diffusion does not involve the 

x (6 x @, which vector x, this theory neglects the real force defined by rnt 

is the molecular centrifugal force in the laboratory frame 

is also absent in theories of translational diffusion which 

In this paper, we use the technique of "molecular dynamics" 

to construct laboratory frame time-correlation functions of 

of reference. This 

do not involve e. 

computer simulation 

each force. It 
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follows that these c.f.' s measure the natural statistical correlation between 

molecular rotation and centre of mass translation and position in the 

laboratory frame of reference. The Fourier transforms of these c.f.'s are 

spectra, and molecular Coriolis and centrifugal forces therefore have an effect 

on far infrared and dielectric spectra 171 and indeed on all the spectra 

dependent on molecular diffusion. Conversely, these spectra all contain 

information on the natural statistical correlation in the lab frame, between 

molecular rotation and centre of mass translation. The theory of decoupled 

rotational (or translational) diffusion is therefore an incomplete 

description of these spectra. 

Component Correlation Functions of the Coriolis and Centrifugal Forces 

1) The vector identify 

immediately provides the result: 

<(x(t) x t(t)) . (x(o) x $0))’ 

= <(~(t).~(o))(pJ(t) . $L$o))> - <(x(t) . *(o))($$(t) * X(O))’ 

(5) 

(6) 

The Coriolis force Zm(g(t) x t(t))exists in the laboratory frame, and 

therefore by eqn (6) 

<(~(t).~(o))(~(t).~(o))> # <(~(t).~(o))(~(t).~(o))> (7) 

and all three types of natural mixed rotation/translation correlation functions 

therefore exist in the laboratory frame and have a different time dependence in 

this frame. At t = 0, the inequality in eqn (7) becomes clearer, i.e.: 

<(VW + (8) 
xx vYwY 

+ vz”z)2’ # <(v2 + v2 
x Y 

+ “i) (UZ + o2 
Y 

+ cl?,> 

The time correlations in eqn (6) are, therefore natural measures of rotation- 

translation coupling in the laboratory frame of reference. 

2) the time-correlation of the molecular centrifugal force in the 

laboratory frame is: 
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C cent. = y(t) x (z(t) x K(t)) . t(o) x ($fgo) x E(O))> (9) 

This is the natural way of expressing the correlation between the laboratory 

frame molecular angular velocity, t, and the position of the centre of mass of 

the same molecule in the laboratory frame, expressed by the vector &, linking 

this point in the 3-D space of the laboratory frame to the origin of this 

frame. In order to analyse the time-correlation function (a), the following 

two vector identities are useful: 

4 x (8 x $, = (A2BlC2 - A2B2Cl - A3B3Cl + A3BlC3),i 

+ (A3B2C3 - A3B3C2 - A1BlC2 + A1B2Cl)i 

+ (A1B3C1 - A1B1C3 - A2B2C3 + A2B3C2)k 

4 x (8 x R, . g x (2 x @ 

Using eqn (11) gives 

C = 
cent 

i!~(t).~(o))(~(t).r(t))(~(o).~(o))> 

- <(~(t).~(o))(~(t).~(t))(~(o).~(o))' 

- <(~(t).~(o))(~(t).~(t))(~(o).~(o)j> 

+ <(~(t).~(o))($t).$(t))(~(o).~(o)' 

which therefore exist in the laboratory frame. 

@ 

9 

(10) 

(11) 

(17-j 

It is interesting to point out that the force proportional to # x 1, 

where t . is the time derivative of the molecular dipole moment [71, is both a 

Coriolis and a centrifugal force. This follows immediately from the - 

kinematic relation: 

(13) 
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In this context thevectork, whose time-correlation function in the 

laboratory frame is the Fouriertransform of the far infra-red power absorption 

coefficient, can always be written as: 

k(t) = i,(t) - &W (14) 

where r and r 
""x QY 

are the position vectors in the laboratory frame. The 

rotational velocity described by the molecular vector t(t) is therefore the 

difference of two translational velocities at the same instant t. It 

follows that the Coriolis force y(t) x G(t) exists in the laboratory frame, 

and that is also a centrifugal force, as mentioned already, because, 

evidently: 

J(J(t) = &Cd - cy(t) (15) 

The equality: 

provides the following relations between laboratory frame correlation functions 

involving the vectors $,k and k which, again, do not seem to have been 

considered in the literature on the theory of molecular diffusion: 

<(k(t) x k(t)) . (y(o) x ,Q(o)) 

= <(t(t) x (t(t) x e(t))) . (&CO) x (y(o) x e(o)))> 

= <(Q(t) . k(o))(k(t) . &CO))’ 

- <(g(t) . Q(o))Q(t) . &CO))’ 

= c+(t) .pJ(o))($+J(t) . ,l$(t))(t(o) - k(O))> 

- <(e(t) .t(o))(g(t) . g(t))(gb) . l$(O))’ 

- c($!j(t) f t(o)) (x(t) . e(t))(&(O) . &CO))> 

(17) 

+ <Q(t) . k(o))@(t) . $f$t))(t(o) * k(O))’ 
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correlation functions: 

<x(t) x e(t) . t(o) x &CO)’ 

= <t(t) . g(o) $ (t) . @Co)> 

- <e(t) . k(o) k(t) . ~kJ)> 

Furthermore, we have the kinematic relation (by differentiation 

$xg=;-Kxk 

of eqn 13). 

Eqn (20) leads directly to the following result, important from an 

= <x(t) . z(o) k(t) . i(o)> (18) 

- <z(t) . qco, k(t) . z(o)> 

It becomes clear now that eqns (6) to (17) are valid for a translating and 

uniformly rotating molecule, and eqn (18) for a translating.and non-uniformly 

rotating molecule in the laboratory frame. This leads us to the conclusion 

that there are correlations of this type, involving the vectors x and LI, in - 

dilute gases, as well as liquids and solids. Furthermore, correlations of 

the type (18) disappear only in the abstract case of the infinitely dilute 

gas where the intermolecular torque is infinitely small. 

The existence of all these correlation functions is a natural consequence 

of the fact that a molecule must rotate and translate in the laboratory frame. 

If this rotational motion is non-uniform, i.e. if intermolecular torques 

are present, then we must also take into account the term 

mt(t) x k(t) in eqn (2). This means that the following relation between 

time correlation functions of this force exists naturally in the 

laboratory frame: 

c:(t) x k(t) . g(o) x cJ(o,> 

These correlations are therefore present in all spectra as a natural 

outcome of rotation and translation. 

Eqn (15) implies the natural existence in the laboratory frame of the 

(19) 

(20) 
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experimental point of view: 

<$t) . j_lJo,> = <k(t) x IA:(t) . ($0, x t(o)> 

+ <t(t) x Q(t) . t(o) x k(o)> 

+ <k(t) x t(t) . @CO) x Q(O)’ 

+ y(t) x k(t) . &Co) x g(o)> 

A we--known theorem on spectral moments [71 provides the result: 

GE- ii;(t) . i(o)> 0: w2a(o) 

(21) 

(22) 

where P stands for Fourier transform and n(w) is the far infrared power 

absorption coefficient. The higher spectral moment w2z(w) is directly 

observable in favourable cases by careful interferometric spectroscopy, 

and eqn 21 therefore shows that its time Fourier transform is a combination 

of correlations between forces such as k(t) x t(t), dependent on the non- 

uniformity of the relation of the molecule-fixed frame with respect to the 

laboratory frame (or vice-versa) and terms such as k(t) x k(t), which, as we 

have seen, are both Coriolis and centrifugal in nature. 

For uniform rotation ($J = $ eqn 21 reduces to: 

$t) . $o)>,, = ygt) x k(t) . t(o) x Q(o)> 

Therefore, for uniform rotation the Fourier transform of the second moment 

w%(w) is the time correlation function of the Coriolis force t(t) x k(t). 

Note that this result is also true in the so-called 181 'inertial 

approximation' in the theory of molecular diffusion, where angular 

accelerations are ignored, but paradoxically in this case w's(w) (and indeed 

a(w)) has no Fourier transform because the area beneath a(w) is the so-called 

limit of the 'Debye plateau', is infinite. (The meaning of k(t) in the 

'inertial approximation' is obscure). 

Eqn 23 would be valid for an ensemble of 'free rotors'. 
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The Spectral Observations of Direct Coriolis Forces 

By 'direct' Coriolis forces, we mean terms of the type x x 8 dependent 

on the centre of mass linear velocity x of a molecule in the laboratory 

frame. In this respect, terms such as !J x 8, etc, involving a vector (the 

dipole moment vector for example) fixed in the molecule are indirect 

Coriolis forces). 

It is impossible to construct a theory for direct Coriolis forces in 

a diffusing molecule without taking into account explicitly both rotational 

and translational diffusion [9-191. However, it is possible to treat forces 

such as k x k in a purely 'rotational' context, although no satisfactory 

treatment exists at present apart from the subject of this paper, computer 

simulation. 

It is possible to observe direct Coriolis forces of the type y, x & in 

at least two ways. 

1) In Anisotropic Materials 

The application of an electric field (,$) to a non-polarisable dipolar 

molecular liquid imparts the extra laboratory frame torque -8 x g to each 

molecule CZOI . If E is uniform and uniaxial the liquid becomes anisotropic 

in the laboratory frame, and its refractive index in the axis of g (eg, the z 

axis of the laboratory frame) differs from that in the x axis. This is the 

well-known Kerr effect C211. Similarly, birefringence can be induced by a 

magnetic field (the Faraday effect) and an electromagnetic field. 

Note in this context that birefringence of this type occurs across the 

whole range of frequencies from static to the visible through the infrared. 

It therefore follows from the Kramers-Kronig relations that the power 

absorption coefficient o(w) must also be different in the z and x axes in the 

presence of ;E. 

It has been shown recently [31 (by computer simulation) that two elements 

of the matrix <x(t)eT(o)> exist in the laboratory frame in a birefringent 

liquid subjected to a uniform electric field g in the laboratory frame z axis. 

There are the (x,y) and (y,x) elements, one being the other's exact mirror 

image, i.e. 
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~“,WyJ) = - <vy(t)wx(o)> (24) 

It follows from eqn 24 that the 'time-offset' direct Coriolis force x(t) x z(o) 

does not average to zero in the laboratory frame in the presence of E 
z' 

In other words: 

<x(t) x t(o)> # 2 (Ez # o) 

= 2k < vx(t)wy(o)> (25) 

( = p(vx(t)wy(o)> - <“y(t)wx(o)~l) 

In eqn. 25 k is a unit vector in the z axis; of the laboratory frame and <> 

denote the usual ensemble averaging used to construct a correlation function 

(equivalent in a statistically stationary sample to running-time averaging C5 I). 

The presence of the vector k on the r.h.s. of eqn 25 implies that the 

existence of the correlation function <x(t) x k(o)> in the laboratory frame 

is always, dependent on anisotropy. A diffusional theory for 

<vx(t)wy(o)> can be developed from the generalised Langevin equation governing 

the complete column vector x(t) 
t(t) 

and is described elsewhere 1211. This theory 

shows that the 'time-offset' Coriolis force correlation <v,(t)wy(o)> is 

observable approximately from the correlation of the far infra-red power 

absorption coefficient IX(W) perpendicular and parallel to EZ. 

Note that <x(t) x t(t) = Q for all t and & so that computer simulation 

seems to be the only means at present of calculating correlations between the 

natural direct Coriolis force proportional to ,v(t) x t(t). Results of this 

type are given for the first time in this paper. 

2) Far Infra-red Collision Induced Absorption 1231 

Collision induced absorption is dependent on the molecular palarisability 

and intramolecular separation. The induced dipole moment is therefore directly 

dependent on centrifugal terms such as 8 x (& x ,rij), where &ij is the inter- 

centre of mass distance. If the relative velocity of two molecules in the 

laboratory frame is v.. 
%=J 

, then the Coriolis forces v.. x g also play a part 
$lJ 

in the dynamics of the induction process. The translation part of the far 

infra-red spectrum of simple linear molecules such as N2 and CO2 has been 

identified 1231 as the low frequency component of a broad infra-red band. 
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Section 2: Computer Simulation Method 

The Chiral Bromochlorofluoromethanes 

Standard constant volume molecular dynamics computer simulation 

methods C67 were employed for 108 molecules of the R enantiomer of CHBrClF 

and for the racemic mixture of 54 R and S molecules. The input temperature 

and molar volume were, respectively, 296 K and 1.2 x 10 26 *3 . Atom-atom 

Lennard-Jones parameters were used as follows: 

a(Br-Br)=3.9 8; o(Cl-Cl) = 3.6 8; o(F-F) = 2.7 8; o(H-H) = 2.8 8; 

o(C-C) = 3.4 #; t/k(Br-Br) = 218.OK; e/k (Cl-Cl) = 158.0 K; 

e/k@+) = 54.9K; e/k(H-H) = 10.0 K; e/k(C-C) = 35.8 K, 

The electrostatic part of the force field was simulated with partial charges 

on each atom as follows: 

qBr = 
- 0.16 le/ ; 

qc1 
= - 0.18 [el ; 

qF = - 0.22 le/ ; qH = 0.225 lel ; qc = 0.335 le/. 

The complete pair-potential between two molecules therefore consisted of 

25 (5x5) site-site terms with the above parameters. This was assumed to be 

the same for R-R and R-S interactions because of the mirror-image symmetry 

of the R and S enantiomers. 

The system was equilibrated over about 2000 time-steps of 0.005 ps each 

and time correlation functions then computed with about 1000 time steps 

(500 records, each separated by 0.01 ps). Running time averages were used 

in building up the correlation functions in the laboratory frame of reference. 

Liquid Dichloromethane in the presence of a Strong, z-Axis External 

Electric Field 1201 

This is the same algorithm as used in the first description 13,221 of 

the functions <vx(t)wy(o)> and <vy(t)wx(o)> referred to already. The 

external torque -gxE is applied as described in the literature C20al. The 

external field used in this algorithm can be strong enough almost to saturate 
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the Langevin function, the sample remaining as a liquid and in anisotropic 

equilibrium. At present, this is possibly only with computer simulation. 

(However, experimentally available Kerr effect apparatus can be adopted to 

measure <vx(t)wy(o)> using far infra-red data and this is an experiment that 

remains to be done). 

The intermolecular potential is a 3 x 3 Lennard-Jones atom-atom with point 

charges representing the electrostatic part of the complete potential. The 

-CH2 group (of mass 14) is represented by 

0 (CH2 - CH2)/k = 70.5K; 

or a(CH2 - CH2) = 3.96 A, 

qCH2 = 0.302(e/ 

The Cl group is represented by a mass of 35.5 and Lennard-Jones and 

partial-charge parameters: 

c(C1 - Cl) / k = 173.5K; 

o(C1 - Cl) = 3.35 1 ; 

qc1 = - 0.151 lel 

The input temperature was 296K and the input molar volume 8.0 x 10 
-5 

m3/mole. Autocorrelation functions were evaluated with 900 records (2700 time 

steps) of 0.015 ps each after field-on equilibration. An electric field 

strength equivalent to about 14.0 kT was used to investigate the effect of 

pronounced liquid anisotropy on the direct Coriolis forces. 

RESULTS AND DISCUSSION 

(R) - Bromochlorofluoro Methane and the Racemic Mixture 

Figure (1) illustrates the (normalised) correlation functions defined 

in Eqn (6); a) for the R enantiomer, and b) for the racemic mixture. All 

three correlation functions of Eqn (6) exist in the laboratory frame with 

similar but not identical time dependencies. 
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(a) Auto-correlation functions of the Coriolis force in (R)-CHBrClF. 

<x(t) x y(t) . J( (0) x y(o)> / <(x (0) . y(o)) . (x (0) . y(o))> 

--------- <(x(t) . &CO)) ( e(t) 

. . . . . . . . . <(x(t) . x (0)) (4 (t) 

(b) As for (a). racemic mixture. 

” Co))> / <(x (0) . !_!$o)P> 
2r 

. Q(O))’ / <v2 (0) cI12 Co)> 

The three correlation functions seem to be different for the racemic 

mixture, so that comparison of spectra for an enantiomer and racemic mixture 

is a useful lead into the nature of the statistical dependence of x upon t 

and vice-versa. This has been pointed out in the literature C20bl for 

elements of the matrix <$t)wT(o)> in enantiomers and racemic mixtures. 

Some Fourier transforms of these correlation functions are compared for 

the R enantiomer in fig (Z), together with Fourier transforms of the velocity 

a.c.f. <$t).x(o)>/<v2> and angular velocity a.c.f. <@t).?(o) /<w2>. It can 

be seen from fig. 2(a) that the frequency dependence of the Coriolis correlation 

function is similar to those of the above two auto correlation functions. 

This fits in with the general finding from computer simulation that 

rotational and translational motion in isotropic molecular ensembles evolve on 

a similar time scale. (However, this is not the case in anisotropic liquids 

(see fig 5(b)) or in liquid crystals 1211). 
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10 
Freq. units 

5 Freq. umts ‘0 

Figure (2) 

(a) Fourier transform of the a.c.f. of x(t) x v(t) 

for (R) - CHBrClF. 

+ Fourier transform of < e(t) . y(o)> / <u2>. 

l Fourier transform of < x(t) . x(o)> / <v2>. 

(b) Fourier transforms of the curves in Fig l(a). 

Therefore, to a first approximation, the Coriolis a.c.f. may be estimated 

experimentally to being roughly similar to the angular velocity a.c.f., which 

in turn is approximately the same as the rotational velocity a.c.f. (fig. (3)). 

The rotational velocity a.c.f. <$,(t).@o)> is related to the Fourier transform 

of the far infra-red power absorption coefficient. Therefore the Coriolis 

a.c.f. can be estimated approximately from the far infra-red power absorption 

of isotropic liquids. 

The correlation function of the centrifugal force (Ccent of Eqn (9)) is 

illustrated in fig (4) for the R enantiomer and racemic mixture. It is 

clear that this correlation function reaches a constant level as t -t m, and 

is again different for enantiomer and racemic mixture. 

This property is echoed in fig (3), for the correlation function: 

cA = <(i*(t) x t(t)) . ($(o) x ~(O))><($*(O) x k(O) . gA(0) 2-c t(o))> 
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where 
$ 

is a unit vector in the A axis of the molecular principal moment 

of inertia frame. As discussed already this is both a centrifugal force 

correlation function and a Coriolis force correlation function; and is 

amenable to calculation with a theory of 'purely rotational' diffusion. No 

satisfactory theoretical description exists, however, at present. 

Figure 3 

(R) CHBrClF, the a.c.f.: 

< ,y* (t) x gj(t) . iA (0) x y(o)> 

“& (0) x y(o)P> 

where tA is a unit vector in the principal 

molecule. The dipole moment vector, n, is 

moment of inertia frame of the 

a combination of eA, tB and EC. 

-+y the same c.f. computed with 4 x r;A for iA as a check of the 

computational accuracy and overall self-consistency in the correlation 

function. 

_------- ‘iAW . iA (o)> / <ez>, the rotational velocity autocorrelation 

function of iA. 

. . . . . . . . < Q(t) . q(o)> / <u2>, the angular velocity autocorrelation 

function. 



246 

Figure (4) 

The a.c.f. of the molecular centrifugal force: rnk x (K x &), for: 

(1) ___ (R) CHBrClF; 

(2) ------ the racemic mixture. 

Dichloromethane in the Presence of a z Axis Electric Field 

Fig (5a) illustrates the correlation functions of eqn (6) computer 

simulated for dichloromethane in the presence of an intense z axis electric 

field. The Coriolis function is oscillatory, and the component a.c.f.'s 

(eqn (6) are likewise oscillatory, but clearly different in time dependence. 

Fig 5(b) illustrates the angular velocity a.c.f. <t(t) . g(o)> and linear 

velocity a.c.f. <x(t) . x(o)> under the same conditions as those of 

fig 5(a). A complete theory of molecular diffusion should be able to describe 

figs 5(a) and 5(b) self-consistently from the basic equations of motion. 

The most promising line of approach at present seems to be the Reduced 

Model Theory (R.M.T.) of Grigolini 1241. 

Fig (6) illustrates the correlation function of the vector & x @ 

(1.h.s. of eqn (18)) for the R enantiomer and racemic mixture of 

bromochlorofluoromethane. This autocorrelation function is not usually 

considered in theories of molecular diffusion but clearly exists in the 

laboratory frame of reference in both enantiomer and racemic mixture due to 

the presence of inter-molecular torques, and the subsequent non-uniformity 

of the molecular rotation in the laboratory frame. 

Finally, fig (7) illustrates the a.c.f. of the Coriolis cum centrifugal 

vector t(t) x ,$A(t) for the anisotropic CH2C12 liquid. HerGA(t) is the 

time derivative of a unit vector ,$A, in the principal moment of inertia 
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0.5 

0 

-0.5 

0 0.6 1.2 DS 

Figure (5) 

(a) As for Fig. (l), liquid CH2C12 subjected to an intense uniaxial 

electric field of force in the lab frame z axis. 

(b) F (1) <x (t) . x (0)) / <“;> 
(2) ‘8 (t) . & (0)) / 0.c > 

Note that the time-dependence of these two functions is very different. 

The time dependence of the Coriolis functions of Fig. 5(a) is intermediate. 

I 

I _. 

I 
1.0 ps 

Figure (6) 

- CR) ___ CHBrClF and -------, the racemic mixture: the 

normalised a.c.f. of the vector & x i, due to the non-uniformity of the 

angular motion of one frame of references (the molecule fixed frame) with 

respect to the other (the laboratory frame). 
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Figure (7) 

CH2C12 + field, the auto-correlation function of the force vector 

& (t) x i* (t) 

frame of the CH2C12 molecule. This function is oscillatory and reaches a 

constant level at t+ m. The Coriolis and centrifugal force a.c.f.'s 

computed in this paper will show the Grigolini decoupling effect 1251, and 

fall-transient acceleration effect 1261 with varying field-strength E 
z' 

CONCLUSIONS 

Autocorrelation functions have been shown to exist in the laboratory 

frame of reference which are not usually fully considered in theories of 

molecular diffusion. These include autocorrelation functions of the 

Coriolis force, 2mx x t ; centrifugal force rnt x (E x z) and the vector 

5 x & generated by the non-uniformity of molecular motion due to inter- 

molecular torques in the laboratory frame. It is appropriate to consider 

these vectors as natural measures of the inter-relation between the centre 

of mass translation or position of a molecule and its own rotational motion. 

It follows that a theory of collisional broadening of spectra must take these 

basic non-inertial forces into account whenever the molecular frame rotates 

and translates with respect to the laboratory frame. 
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