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ABSTRACT 

The theory of Brownian motion in cosinal potential wells 

produces numerous resonance peaks in the far infra-red power 

absorption coefficient when the friction coefficient (B) becomes 

small. The same rotational Langevin equation produces a 

dielectric loss e"(a) at lower frequencies resembling the 

bell,-shaped curve of Debye. This shape is also recovered from the 

less well-known Ivanov jump model, valid, as for Debye, at low 

frequencies only. In this letter, we explore formally the effect 

of using a "complex friction" coefficient of the form (B - iw) 

to describe the cross-mode coupling induced by an electric field. 

It is found that as w is increased the dielectric loss sharpens, 

shifts, and broadens in cycles, and fine structure is periodically 

resolved on the high frequency side. The peaks in the far 

infra-red power absorption coefficient shift in relative intensity 

and position in an intricate pattern. An interpretation of 

"complex friction" is given in terms of two linked Langevin 

equations, for rototranslational Brownian motion in a 

pseudo-potential well that is periodic in the two dynamical 

variables that appear in the equations. 
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INTRODUCTION 

The theory of Brownian motion in potential wells has been 

given a new impetus recently by Reid [l], who provided the first 

complete numerical solution of the Kramers equation [2]: 

v=- VO COB Ns . 

Here p(e,e,tle(O),e(O),O) is the phase space joint conditional 

probability density function governing the time dependence of fI , 

an angular coordinate describing molecular rotational motion 

constrained to two dimensions for simplicity of argument - the 

so-called "circular diffusion" process. The rotational motion 

takes place in potential wells of the type (2), where VO is the 

barrier height and N the well multiplicity. I is the effective 

molecular moment of inertia and B the friction coefficient of 

the equivalent rotational Langevin equation [3]: 

. . 
1e + IB0 + v'(e) = W(t) (2) 

where W(t) is a Wiener process. The parameter B can also be 

interpreted as the frequency of escape from the potential wells, 

or barrier jumping frequency. Equation (3) therefore effectively 

combines the concepts of diffusion [3] (Debye) and well jumping 

r41 (1vano-J) I and includes the inertial term Ie _ Equations of 

the form (2) and (3) are also of use in the description of V-I 

characteristics in Josephson junction hysteresis [5], and for a 

range of other phenomena [6], including ionic diffusion and 

super-conductivity. Reid's results are given in terms of the 

parameters [l]: 

a = (kT/I)li2 ; B; and Y - VO/(2(IkT)l/2) 

The numerical solution of equation (1) leads to the appearance 

of fine structure in the far infra-red power absorption 

coefficient o(w) and to a broad, low frequency dielectric loss 

(E"(W)) curve with the additional structure superimposed at high 

frequencies. Here w is the angular frequency in radians set-l . 

Experimental evidence for this type of fine structure is available 

[7] for fluid acetonitrile and in liquid crystals subjected to 
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external electric fields [8]. In these experimental papers the 

effect of a static, external electric field on the far infra-red 

structure is reported to be to shift the individual peaks in 

position and intensity. 

In this paper we initiate the formal development of the theory 

(equation (1)) in order to consider the effect on a(w) and 

c"(w) of an extra field term. The way this is done depends on 

the nature of the field. The external, static, electric field may 

be incorporated by rewriting equation (1) as: 

1; + 1s; + V'l(C9) = W(t) (3) 

vi(e) = - VO CO9 N(0) - fi E CO8 (e - 80) 

where fi is the molecular dipole moment and E the electric 

field strength (volts cm-l) . In this case the electric field 

effectively produces an increase in the parameter 7 , for 

constant a,B, and N . It is clear from the structure of 

equation (3) that the extra term fi E sin 8 will produce more 

peaks in the far infra-red, because of the new librational 

frequency proportional to E . 

If the angular velocity variable 0 is correlated with 

another dynamical variable in the system under consideration, for 

example the linear molecular centre of mass velocity y , then 

it is well known that the dynamics of the molecular ensemble can 

be described with equations of the type (3) , but with e 

replaced by a column vector e 
[ I v - 

An external electric field breaks parity symmetry and, in 

three dimensions, makes visible [lo] in the laboratory frame ’ 

cross-correlations such as <v(t) wT(0)> where 0 is the 

usual three-dimensional molecular angular velocity. 

Assuming that these cross-correlations still exist when the 

dimensionality of the system is reduced from three to two, then it 

follows that equation (3) is an incomplete description of the 

system under consideration and must be extended to include the 

electric field induced roto-translational cross-correlations. A 

convenient way of doing this is to rewrite equation (3) as: 

. . 
18 t I(s - iwl)e t v’(e) t IL E sin e = w(t) (4) 

with the assumption that 01 = 0 for E - 0 , i.e. Iiwle is a 
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term whose effect is to introduce dynamical cross-correlations in 

response to an electric field E applied externally to the 

sample. Equation (5) can be solved straight-forwardly with the 

numerical differential-difference algorithm described by Reid [1], 

using complex arithmetic in the computer. This paper reports the 

solution of equation (4) by varying 01 for constant a,B,r , 

and N 

RESLJL4TS -- 

The solution of equation (4) for o(w) and e"(w) follows 

the method of Reid. The complex arithmetic was evaluated with 

FORTRAN complex arithmetic of the CDC 7600 computer. The real 

part of a"(w) shows a series of cycles as wl is increased. 

The first of these is illustrated in Fig (1) for the low frequency 

part of the overall loss profile. The 3-D schematics of Fig l(b) 

and Fig. l(c) shows the complete range of E"(W) , including the 

far infra-red. (For computational convenience in these curves, 

the angle between E and E has been set at 28 , and the well 

multiplicity N has also been taken as N = 2 , thus eLiminating 

cross-coefficients in the differential-difference matrix inversion 

technique by Reid [l]. Most of the features of the solution to 

equation (3) reported below are expected to persist in the 

presence of cross-terms, vi(e) in equation (3).) The reversed 

view of Fig. l(c) illustrates the particularly interesting 
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i iqure (1) 

(a) The first cycle in E”(W) as function of wl . The 

abscissa is loglo - 12 - Far infra-red fine structure 

not shown. 

(b) Schematic of fig. l(a), showing peaks in the first part of the 

1st cycle, plus far infra-red detail. 

(c) Back view of fig. l(b), showing reverse frequency dependence 

of loss peaks in the latter part of the first cycle. 
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behaviour at the end of the first cycle (wl = 0.9THz and 

Wl = l.OTHz ) where the main dielectric loss breaks into two 

peaks and becomes broader than the Debye half-width of 1.12 

decades. The behaviour of the loss curve in this region is 

detailed further in Fig. (2). As w1 is increased further the 

sequence OP dielectric loss curves e"(w) goes into a second 

cycle, whose component curves are sharper and more intense than 

Lhooe of cycle 1 . The second cycle occupies the range 

1.0 THz < wl C 4.0 THz . At about 4.0 THz a secondary lower 

frequency loss process appears again which is broader than in the 

first cycle, and peaks at a slightly lower w . The whole process 

then goes into a third and more cycles for wl > 4.0 THz . At the 

same time, the equivalent process in terms of the far infra-red 

power absorption coefficient causes the numerous peaks in a(w) 

to change in relative intensity and frequency, as reported 

experimentally L7,8]. The whole of this process takes place in 

the low friction (or barrier crossing-frequency) limit 

(/3 = 0.1 THz) for fixed values of a = 8.0 THz and Y = 10 THz . 

ELECTRIC FIELD EFFECTS (REAL ((3, zO.11 

LOG(o) -12 

Fiaure (2) 

Behaviour of e"(w) towards the end of the first cycle, 

(Wl = 0.9 THz , wl = 1.0 THz , w1 = 1.2 THz). 
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It is worth noting that wl = 1.0 THz and I = 10q40 gm cm2 

correspond to an electric field strength of 100 volts cm-l for a 

dipole moment IL = l.OD _ It is interesting to note also that the 

same type of equations as used here for the molecular dynamical 

processes responsible for E"(W) and a(w) can be used in 

several related areas of investigation as emphasised by Grigolini 

et al [6], and by Reid [l]. One of the most important of these is 

superconductivity and Josephson junction V-I characteristics and 

hysteresis, whose equations are formally identical with eqns 

(l)-(3) with wl = 0 . The appearance of peaks in the low 

friction limit should have interesting physical analogies in these 

related areas of research, especially in the presence of 

alternating or circularly polarised external fields. 

DISCUSS ION 

The effective potential in the presence of an external 

electric field is: 

v(e) = - VO COB (N(B - 00)) - fi COB 6 . 

Let us assume however, for the sake of simplicity, that 

;i + (49 - iwl) 6 + 
VotEI 
- sin 8 = F = p(t) 

I (5) 

where VO(E) = VO + J.LE and F(t) is a Gaussian white noise with 

zero mean-value. 

When 01 = 0 the fluctuation dissipation relation is assumed 

(<e2>eq = kT/I) 

<f(t)fO> = ZD6(t) 

D = I28 <82>eq 

= IBkT . 

(6) 

Introducing a complex friction constant means that P(t) must 

be split into two statistically related components: 

R(t) = Px(t) + i Py(t) (7) 

+ ifI fR(t) _ 

I I 

so that 
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<fR(t)fR(O)> = 2DRR o(t) (8) 

<fI(t) fI(O)> = ZDII 6(t) (3) 

<fR(t) fI(O)> = DRI b(t) (10) 

DRI = DIR 

BY apI?lYing, formally, the fluctuation dissipation theorem we 

find: 

DRR - DII = BF (11) 

DRI = DIR = - ~19 (12) 

In general, e(t) is now a complex variable: 

e(t) = x(t) + iy(t) , 

so that: 

d d d =+=-ii. 

Rqn (5), for a complex e(t) 

; + 8; + 01; + 2 V(x,y) 

(13) 

(14) 

, can be rewritten as: 

= Rx(t) 

= Ry(t) 

(15) 

;; f a; - 01; - gj V(x,y) 

where 

Vo(E) ___ . 
V(XrYl = - - cos x cash y I (15) 

This is a pseudo-potential, formally valid for the problem at 

hand, but which cannot be recovered from the set of standard 

canonical equations obtained from the relevant Louvillian Equation 

(15) can be written as 

. . 
x t I-x t W(X,Y) - F _ -_ _ (17) 

where 

[ 1: 1 1 8 Wl 
X- 

,r= I : -01 4 
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with 

<F,(t) Fx(O)> = 2D,, d(t) 

<Py(t) Fy(O)> = 2Dyy a(t) 

J'xx = 128 <x2> 

Dyy = 12B<y2> 

@x(t) Py(C)> = Dxy o(t) 

CxY =Dyx = - OlIBkT 

12B(<X2) - <;2,) = IBkT 

for consistency with eqns (11) and (12). 

PHYSICAL INTERPRETATION OF EQUATION (15) 

It is assumed that an external field E_ triggers 

rotation/translation coupling in the laboratory frame by breaking 

the parity inversion symmetry of the overall hamiltonian. In 

particular it is assumed that wl depends on E , so that 

wl(E -0)-O (18) 

In the limit E - 0 the two equations (15) decouple, into 

purely rotational and translational Langevin equations. In this 

limit 

x - e and lim V(x,y) = V(e) 
Ed0 

(19) 

with V(e) as used in equation (2). The variable y of equation 

(15) must be dimensionless. The only quantity relevant to the 

problem having dimensions of the inverse of length is eCE/(kT) , 

where the eC charge ia defined microscopically by 

IFI 

eo =m (20) 

where 5 is an intrinsic length scale (of the order of the 

spacing between rotators or diameter of the rotator itself for 

example), so that 
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and 

(21) 

The potential V(x,y) can then be rewritten as: 

- Q(E) COB 6 cash (r/rg(E)) 

with: 

(22) 

<e> = [ f-g 1’ Ap + !y , 

the mean square linear, centre of mass velocity <V2> being 

H/m , and the mean square rotational velocity: 

<e2> = [ g 1’ 2 + 9 

(23) 

(24) 

Equation (17) now becomes: 

g = [ ; ] ; E I B w1’ro ] ; 
[ -wlro B 

The displacement f can be thought of as the 

displacement of the tagged polar molecule from the centre of the 

annulus (surrounding cage of molecules) generating the multiwell 

potential and mimicking the "spectator" cage. 

The presence of the potential (22) presents large 

displacements III from taking place because of the presence 

of the external electric field E . When there is no 

external electric field there is no restraint on r . This 

means that the electric field tends to line up the dipole moments 

11 of the individual molecules in the sample. The rate at which 

the dipoles line up is dependent in the same way on @/kT . 

This implies that any displacement of the tagged molecule from its 

minimum potential energy site would bring aligned dipole-moments 

closer together, the resultant repulsion justifying the confining 

potential term cash g f . [ 3 
In other words the action of an electric field E makes 

the tagged molecule sense the presence of the remaining dipoles 

and therefore introduces a type of finite-range correlation 



261 

1 m(E) - - 1 . It is possible to extend this interpretation to 
I 

-- 
E-O J 

three-dimensions using: 

LLE - r 

=’ kTa 

but the two dimensional interpretation used 

Finally, the multiplicative coupling 

COB e cash (r/rO(E)) 

above is simpler - 

can be justified by assuming that when r l 0 the tagged molecule 

is closer to the annulus (cage) and therefore the coupling with it 

is stronger. 

This type of potential is therefore the result of using a 

"complex friction" in the Kramer8 equation. The real part of this 

"complex friction" is the Kramer8 barrier-crossing rate. When 

this is low, the far infra-red spectrum splits into the numerous 

separate peaks described in this paper. 
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