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Abstract 

Recently, the structure of spacetime was incorporated into the ECE equations of 

electromagnetism.  In this paper, the field equations are shown to possess nonlinear terms that 

appear when the metric coefficients depend on the value of the magnetic field. This is 

investigated for the case of an infinite solenoid. With reasonable simplifications, the non-linear 

hyperbolic partial differential equation is shown to reduce to a distorted wave equation which 

offers solutions that show amplification effects.  Heterodyning behaviour was observed, 

corresponding to the resonance for the first standing wave in the solenoid core.  At higher 

frequencies, the magnetic field becomes asymptotically linear in time, indicating some form of 

resonant growth.          
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Introduction 

In previous publications [1,2,3], it was shown that the standard ECE electromagnetic theory for a 

single polarization is equivalent in a mathematical sense to traditional electromagnetic theory 

whenever the vector potential is a continuous function of time. We note that this equivalence is 

superficial because the ECE theory of electromagnetism is not restricted to the Minkowski 

metric, the basis of Maxwellian theory.  We noted also that this continuous state is very stable 

and that once a system is there, it takes a vector potential that is not continuous in time to jar it 

from this stability. 

This suggests that devices such as the energy savings devices developed in Mexico [4] are not 

described by the original ECE theory of electromagnetism because observational data suggests 

that the potentials in the device are continuous in time. Other devices, such as the Bedini 
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machine [5] and toroidal power devices [6] may have explanation in the “first generation” ECE 

theory if they can actually achieve a state where the vector potential is not continuous. The 

practicality of achieving this theoretical state remains to be demonstrated. 

A “second generation” ECE theory of electromagnetism has been introduced [7] where a 

connection of the field variables was made with the structure of the metric.  It will be shown in 

this paper that this connection offers an explanation for over-unity energetics in “more or less” 

traditional electronic and electromechanical devices. A design strategy is presented based upon 

the analysis of an infinitely long solenoid where the metric properties depend upon the applied 

fields. 

The Field Equations 

The basic premise of this paper is that if anomalous behaviour is to be observable in a device, it 

should show up as an anomaly in the electric and/or magnetic fields.  This allows the use of the 

field equations without the introduction of potentials and spin connections as described in ECE 

theory [7], except for boundary conditions that require potential sources. 

Paper [7] provides the basis for introducing the metric into the ECE electromagnetic equations.  

In that paper, the metric has been assumed to be diagonal, with the components of the electric 

displacement D given by 

�� = ���������� , 

�� = ���������� ,          (1) 

�	 = ������		�	 . 

In vector form, this is  


 = �� ∙ �           (2)  

where E is the electric intensity, D is the electric displacement, and �� is related to the metric 

tensor through 

���� = �����	���.          (3) 
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For notational purposes, we write  


 = ���, ��, �	�� ,          (4) 

� = ���, ��, �	�� .          (5) 

Similarly for the magnetic intensity H and the magnetic induction B [7], 

�� = �
��
����		�� , 

�� = �
��
����		�� ,          (6) 

�	 = �
��
�������	  

can be rewritten as 

� = �� ∙ �            (7) 

where �� is related to the metric through 

���� = ����  
��

            (8) 

and  

� = ���, ��, �	�� ,          (9) 

� = ���, ��, �	�� .          (10) 

For simplicity, we will ignore additional constant polarization and magnetization effects that are 

often added for completeness in traditional electromagnetism [8]. 

The homogeneous field equations of ECE theory are 

! ∙ � = 0 ,           (11) 

∇ × � + &�
&' = 0 .          (12) 

The inhomogeneous equations of the ECE electromagnetic theory are given by 
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! ∙ 
 = ( ,           (13) 

∇ ×� − &

&' = * .          (14) 

Using equation (2) and equation (7), equations (13) and (14) can be rewritten as 

! ∙ +�� ∙ �, = ( ,          (15) 

∇ × +�� 	 ∙ �, − �� ∙ &�&' −
&��
&' ∙ � = * .       (16) 

In this paper, we shall assume that diagonal elements of the metric tensors vary in an amount 

proportional to the work done by the electromagnetic field, which when the electric field is 

negligible in comparison to the magnetic field, is 

���� = �
�-
�1 + /0� ∙ ��,         (17) 

 ��1�� �2�1 + �0� ∙ ��. 

/2 and �2 are the permeability and permittivity of the material in the absence of electromagnetic 

fields, and the terms /0 and �0 are constants yet to be determined.  

Infinite Solenoid 

Let us now consider the case of an infinitely long solenoid.  The solenoid has cross-sectional 

geometry as illustrated in Figure 1; the outer region consists of the windings of the solenoid of 

thickness h, and the inner region is the core with outer radius r0. 

 

 

       

 

      Figure 1.  Solenoid Geometry 
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Because the core is infinite in length, and radially symmetrical, all functions depend upon radial 

position and time only.  Thus we can write for a cylindrical polar coordinate system, 

� = +0, 0, �3�4, 5�,
�
 ,          (18) 

� = �0, �6�4, 5�, 0�� .          (19) 

Because of equation (18), Gauss’ Law, equation (11), is automatically satisfied.   

Equations (12), Faraday’s Law, reduces to 

�
7
&�7�8�
&7 + &9:

&' = 0 .          (20) 

Equation (13) requires that 

( = 0 .             

Finally, equation (14) becomes 

− &+;<==9:,
&7 − &+;>??�8,

&' = @6 .         (21) 

The metric properties for equation (21) are from equation (17), which are for this situation, 

��		 = �
�-
�1 + /0�3�� ,         (22) 

���� = �2�1 + �0�3��  .         (23) 

Incorporating the material properties of equations (22) and (23) into (21) gives 

− &
&7 +�3�1 + /0�3��, − /2�2

&A+�BCD9:?,�8E
&' = /2@6 .    (24) 

Equation (24) can be simplified to 

− &9:
&7 −/0

&
&7�3

	 − �
2?

&�8
&' −

CD
2?

&+9:?�8,
&' = /2@6     (25) 

where 
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/2�2 = �
2? .    (26) 

Equations (20) and (25) can be combined into a single equation. To do this, we multiply equation 

(25) by r and then take the derivative with respect to r.   

− &
&7 A4

&9:
&7 E−/0

&
&7 A4

&
&7 �3

	E − �
2?

&?�7�8�
&7&' − CD

2?
&?+9:?7�8,

&7&' = /2 &
&7 �4@6� .   (27) 

Using Faraday’s Law, equation (20), in various forms, converts equation (27) to a partial 

differential equation in �3.  If we integrate equation (20), 

4�6 = −F4 &9:&' G4 + H�5�     (28) 

where H�5� is a constant of integration that can be taken to be zero for �6 not to be singular at the 

centre of the core. 

If we take the time derivative of equation (20) we get 

&?�7�8�
&7&' = −4 &

?9:
&'?  .    (29) 

Expanding the last term of the left hand side of equation (27), we have 

&?+9:?7�8,
&7&' = &

&' A�3
� &
&7 �4�6� + 4�6 &9:

?

&7 E . 

This expands to 

&?+9:?7�8,
&7&' = �3� &?

&'&7 �4�6� +
&
&' ��3

�� &&I �4�6� +
&
&' A4�6

&9:?
&7 E . 

If we substitute equation (29) into the first term, equation (20) into the middle term, and equation 

(28) into the last term we have 

&?+9:?7�8,
&7&' = �3� A−4 &

?9:
&'? 	E +

&
&' ��3

�� A−4 &9:&' E +
&
&' A−

&9:?
&7 F 4

&9:
&' G4E . 

The first two terms of this expression combine  

�3� A−4 &
?9:
&'? 	E +

&
&' ��3

�� A−4 &9:&' E = −4 &
&' A�3

� &9:
&' E = − 7

	
&?9:=
&'?   
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leaving  

&?+9:?7�8,
&7&' = − 7

	
&?9:=
&'? −

&
&' A

&9:?
&7 F 4

&9:
&' G4E . 

 If we now substitute this and equation (20) into equation (27), we get 

A− &
&7 A4

&9:
&7 E +

7
2?

&?9:
&'? E−/0

&
&7 A4

&
&7 �3

	E + 7CD
	2?

&?9:=
&'? +

CD
2?

&
&' A

&9:?
&7 F 4

&9:
&' G4E = /2 &

&7 �4@6� . 
    (30) 

Dividing this equation by r and reorganizing puts this into a more traditional form 

�
7
&
&7 A4

&+9:B�D9:=,
&7 E − �

2?
&?A9:BJD= 9:

=E
&'? − CD

72?
&
&' A

&9:?
&7 F 4

&9:
&' G4E = − �-

7
&
&7 �4@6�.  (31) 

In this nonlinear wave equation, if the last term is significantly smaller than its predecessors, 

equation (31) simplifies to 

�
7
&
&7 A4

&+9:B�D9:=,
&7 E − �

2?
&?A9:BJD= 9:

=E
&'? = − �-

7
&
&7 �4@6� .     (32) 

The traditional wave equation emerges from equation (32) if the magnitudes of both /0 and 

K0	are significantly less than one (for nominal magnitudes of �3). 

Boundary and Loading Conditions 

The electromagnetic field equations (11) through (14) are mathematically similar to the field 

equations of traditional electromagnetic theory. Boundary conditions are found in any good 

textbook on the subject [8].  

The boundary and loading conditions as applied to this problem are,  

• �3 is continuous at the interface between the winding and core. Some finite element 

software based on calculus of variations techniques use “flow conditions” at an interface, 

which in this case would be that the volume integrals over the interface of ! ∙ � = 0	  
(which is automatically satisfied),  and  ∇ × +�� ∙ �	, = 0  at the interface between the 

coil and the core, and the coil and the outside environment.  

• 
&9:
&7 = 0 at the centre of the core 
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Loading of the coil is provided through		@6.  If one assumes that the current density through the 

windings is constant, then 

@6 = L	M�'�
N            (33) 

where n is the number of turns per unit length in the coil, h is the thickness of the coil, and O�5� is 

the current flow in the wires of the coil, assumed  uniform. 

Numerical Solution 

Equation (31) and (32) were solved using a commercial finite element solver [9] subject to the 

loading and boundary conditions discussed in the previous section.  The factors 
�
2? and 

CD
2?  grossly 

imbalance the relative size of the terms in the equation, making the solutions prone to numerical 

error. This is alleviated using the following transformation: 

P = Q7
2  ,           (34) 

R = S5 .           (35) 

Equations (31) and (32) then become upon substituting (34) and (35) 

�
T
&
&T AP

&+9:B�D9:=,
&T E − &?A9:BJD= 9:

=E
&U? − CD

T
&
&U A

&9:?
&T FP

&9:
&U GPE = − �-

T A
Q
2E

&
&T �P@6�  (36) 

and  

�
T
&
&T AP

&+9:B�D9:=,
&T E − &?A9:BJD= 9:

=E
&U? = − �-

T A
Q
2E

&
&T �P@6� .     (37) 

The last term of equation (36) was calculated separately and shown to be significantly less in 

magnitude than the other terms in the equation.  Because of the limitations of the software, 
&9:
&U  

was taken to be spatially constant, so that 

FP &9:
&U GP ≈

&9:
&U

T?
�   

which then gives the last term approximately as 
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CD
T

&
&U A

&9:?
&T FP

&9:
&U GPE ≈

CDT
�

&
&U A

&9:?
&T

&9:
&U E.       (38) 

The constants for the problem were taken as “typical” expected values, although at this time, 

realistic estimates of �0 and /0	are not available. The following properties (in SI units) were 

used in the calculations: 

4� = 0.01	X  

/2 = 4Z	10[\  

�2 = 8.85	10[��  

�0 = 0.001  

/0 = 0.01  

@6 = O� LN sin�b5�  

Where 

c = 1000 , 

ℎ = 0.001	X , 

O� = 0.001	eXfg4gh . 

For small values of   
Q7
2 	, the magnetic field is constant across the cross-section, and follows the 

driving function as is shown in Figure 1. 

  



 

 

(a) 
Q7�
2 = 0.15          

�i�			Q7�2 � 2.3                         
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                                                                    (d)				Q7�2 � 15   
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                         (e)  
Q7�
2 = 150                        

Figure 1.  Bz with sinusoidal driving function (orange:  4 � 4�;    green:  4 � 7�� ;    blue: 	4 � 0) 

For values of 		Q7�2   of about two, the system becomes increasingly unstable.  This happens to be 

the first zero in the zeroth order Bessel function of the first kind, corresponding to a standing 

half-wave across the diameter of the core.  This is the first resonant point with heterodyning 

appearing in the solution.   Similar behaviour has been observed previously in studies of the ECE 

form of Coulomb’s Law [10].  The details of the resonance cannot be calculated at this time, due 

to the unstable nature of the solution algorithm in this region. 

For large values of 		Q7�2   stability again returns.  Figure 1 (e) suggests an asymptotic behaviour 

for large values of  Q7�2 . When this occurs, 
&9:		&T  is practically constant across the core. This 

suggests that the second degree temporal term in equation (32) dominates i.e. 

&?A9:BJD= 9:=E&U? � 0 .          (39) 

The analytic solution of this equation is, 

�3 � √�=
mnCD=�o2p?CD�2?B'�?B\�[	2p'CD?[	2p2?CD?= ) mnqCD=�o2p?CD�2?B'�?B\�[	2p'CD?[	2p2?CD?=

√�= CD   (40) 

where  i� and  i�  are constants of integration. 
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If this is written as a power series in  P = 3i�R  

then  

�3 ≈ r� + r�P + ⋯           (41) 

At R = 0 the field �3 is zero, so that r� = 0. 

We also have that  

�3 ≈ /2O� LN H�R�     so that 

�3 ≈ /2O� LN 		τ           (42) 

This is shown in Figure 1(e) using the reference data for the finite element calculation.  The 

agreement observed here is fairly strong evidence for the validity of the solution at these higher 

frequencies. 

Solutions to equations (36) or (37) were attempted using driving functions with discontinuous 

time derivatives such as |sin�S5�| without success. Pulse-like driving functions such as 

sin�S5�L were analyzed successfully and the results for  c = 6, are presented in Figure 2.  This 

system was more unstable than for the sinusoidal driving function.  Even though the term 
&9:
&T  

was zero across the core for higher frequency solutions, the computation was not stable.  

Heterodyning behaviour is suspected again when 
Q7�
2   is about two. 
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(a) 
Q7�
2 = 0.015                                                                     (b)				Q7�2 = 0.15                              

 

 

 

 

 

 (c)				Q7�2 = 1.5                              

Figure 2.  Bz with pulse-like driving function (orange:  4 = 4�;    green:  4 = 7�
� ;    blue: 	4 = 0) 

Conclusions 

Amplification of the magnetic field was observed for the infinitely long solenoid, when the 

metric coefficients were not of unit value, and depended upon the magnitude of the magnetic 

field. A resonant frequency is indicated, but its value could not be determined precisely because 

of numerical instabilities that occurred when solving the equations.  Heterodyning behaviour 

occurs when 
			Q7�
2 ≈ 2. This is the resonance for the first standing wave. Similar behaviour has 

been observed previously in studies of the ECE form of Coulomb’s Law [10].  Further, at higher 

frequencies, the solution become asymptotically linear in time, perhaps indicating some form of 

resonant growth. 
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