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Abstract 
By formulating the equations of ECE field theory as expressions of the potential field, Evans 
has shown that resonance absorption from ECE spacetime and counter gravitation is possi-
ble. There is an urgent need to inspect these mechanisms further by numerically solving the 
ECE equations. This paper is a first step towards such solutions. The resonance equations 
are rewritten in a form suitable for numerical treatment without losing too much essential in-
formation. Resonance frequencies should be obtainable. A simple solution for the boundary 
problem is presented, and a numerical scheme for an implementation by computer code is 
derived. 
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1 Introduction 
A covariant unified field theory (ECE, Einstein – Cartan – Evans theory) has been developed 
by Evans since 2003 [1]. Gravitation and electromagnetism are shown to originate from 
space time geometry and are described by a unifed field. The field equations are most clearly 
formulated by Cartan geometry. Alternatively a tensor representation is appropriate which is 
justified by the fact that the theory is based on Einstein’s general relativity. Finally a vector 
form can be chosen to clarify the connection to electrodynamics and technical applications. 
All three forms are mathematically equivalent. In this paper we choose the vector representa-
tion since this form is closest related to numerical standard methods being available today. 
Cartan and tensor formulations may be best suited for symbolic manipulations by computer 
algebra systems. 

The ECE equations are within a scalar valued factor the equations of Cartan geometry. As in 
the standard model of Maxwell-Heaviside electrodynamics, the equations can be formulated 
by using either the field tensor or a potential field. The field tensor is within a factor equal to 
Cartan torsion, and the potential field is within the same factor identical to the tetrad, the ba-
sis vectors of the tangent space of ECE space time.  

From experiments it is known that there can be spin connections - and therefore potentials - 
where no fields exist (for example in the Aharonov Bohm effect [4]). Hence the potential field 
is more fundamental than the field tensor. In particular this becomes apparent when reso-
nance effects are considered. Recently Evans has shown that resonant solutions for the ECE 
equations exist by which it is possible to gather electric energy from spacetime [2] and even 
get counter gravitation effects [3]. In both cases a resonance behaviour appears for the po-
tential field. One of the equations has been shown to change to a well known equation for a 
resonant driven oscillator in classical dynamics if certain approximations are applied. So it is 
ensured by theory that resonance effects in ECE spacetime exist. 

For comparison with experiments and in order to design new applications the equations have 
to be solved numerically. Even in this case, certain approximations have to be introduced, 
albeit being less restrictive than for analytic solutions. In particular, an approximate expres-
sion for the spin connectons has to be found. In a full-blown solution these connections must 
also be handled as variables like the tetrads or the potential fields, respectively. But this 
would require solving nonlinear equations for about 100 variables simultaneously, which is 
an ambitious task even for today’s supercomputers. 

The solution method proposed in this paper is the discretization of the equations on a regular 
3D grid. Three space dimensions are required since the resonance equations contain vector 
products which cannot be reduced to less dimensions. This is an effect of Cartan geometry 
where the description of torsion requires at least three dimensions. In this paper we restrict 
our considerations to a cubic grid. Cylindric or spherical symmetry may also be important for 
corresponding application cases. 

A further point concerning the solution of differential equations is the choice of appropriate 
boundary conditions. The derivatives are of second order in space coordinates, so we have 
to define boundary values of the potential field and possibly its first derivative. Both must fulfil 
the differential equations on the boundary. Finding such values can be difficult as is known 
from the solution of Einstein’s equations [5]. In this paper we restrict consideration to configu-
rations in free space where masses and charges are located far enough from the boundaries 
so that approximate solutions as for the Poisson equation can be chosen on the borders. 
Source terms not being present in ECE theory will be added to make the inner structure of 
the definition volume easier to compute by numerical methods. 

In the next section we bring the ECE resonance equations into a form being suitable for nu-
merical treatment. In the third section approximations for the spin connections are discussed. 
The boundary conditions are handled in section  four, and examples for the concrete iteration 
scheme are given in the fifth section. 
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2 The equations to be solved 
In order to come to a numerical treatment of the resonance effects we will develop the reso-
nance equations into a suitable form. We do this for the spacetime current resonances first.  

2.1 Resonance currents 
The resonance equations of ref. [2] in the original form (eqs. 63, 66, 95, 99) are: 

 
Here Aa is the potential field, ωa

b is the spin connection, ja is the homogeneous and Ja the 
inhomogeneous current. The range of the polarization indices is a,b = 0,1,2,3. The variables 
are explained in detail in [2]. 

First let’s check if the equations are well defined. This requires us to count the number of 
unknowns and to compare it with the number of equations. We consider the spin connections 
as predefined functions here to retain the (formally) linear structure of the equations. The 
currents ja and Ja are considered to be the “driving forces” and predefined also. The potential 
field Aa is unknown. As explained in [2] it can be decomposed into a scalar part A0a and a 
vector part Aa. This gives 4+12=16 components. Compared to this, equations (1)-(4) repre-
sent 32 single equations. This mismatch has to be resolved. 

The idea is to handle the equations for the homogeneous and inhomogeneous current sepa-
rately. This leads to two resonant structures, one for each type of current. Equations (1) and 
(2) are then decoupled from equations (3) and (4), and we have arrived at two well defined 
sets of equations. 

Next we consider the time dependence of the equations. From the theory of damped oscilla-
tors [6] it is known that time-dependent behaviour plays only a role during a transient phase 
after the external force has been applied. We could try to neglect the time derivatives com-
pletely, but this would change the nature of the equations since the “force term” would be 
missing then. Furthermore, the driving force is oscillatory and therefore time dependent [6]. 
In addition, the presence of the spin connections in equations (1)-(4) is connected to the ex-
istence of an oscillation since the frequency is part of the chosen form of ωa

b as discussed in 
section 3.  

So we make a less restrictive approximation. We assume the time dependence of Aa, ja and 
Ja to be of the harmonic oscillatory form 

 exp(-iωt). 
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(Notice that ω here stands for the frequency scalar value, not for the spin connection.) For 
example the potential field takes the form 

 Aa
µ = Aa

µ(x, y, z, ω) exp(-iωt). 

Such an assumption is justified for electromagnetic waves in vacuo since an arbitrary solu-
tion can be build by Fourier superposition of the solutions for fixed frequencies [7]. However, 
the spin connections are also time dependent in general. In section 3 we make an assump-
tion for the form of them showing that each element of ωa

b is represented by a linear combi-
nation of elements of Aa. As a consequence all spin connections show the same time de-
pendence as the potential field Aa. Inserting these factors in equations (1) to (4) leads to 

 
Due to the nonlinearities induced by the spin connections, not all exponential time factors 
cancel out. On the other hand, a stationary solution is highly desirable for computational sim-
plicity. Obviously the remaining time factors lead to an oscillatory behaviour of the terms with 
spin connections. This is the effect of coupling electromagnetism with gravitation. We restrict 
ourselves to calculating the maximum effect. The impact of the spin connections is maximal 
when the real part of the phase factor is unity, we can therefore choose t=0. With this addi-
tional restriction the equations become time-independent, taking the form 
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where we have applied the vector identity 

 
in the last equation. This is a form suitable for discretization on a grid for the space coordi-
nates. The solution method and iteration scheme are discussed later in section 5. 

The electric and magnetic field can be calculated from the vector part of A by the equations 

where the polarization index is a=1,2,3. 

2.2 Resonant counter gravitation 
We repeat the above steps for the equations of counter gravitation which have been derived 
in [3]. In the exact expressions for the Coulomb law and Ampère-Maxwell law, the spin con-
nections occur in contravariant form and additionally in their covariant version ωa

b’. These 
can be obtained from the contravariant versions by applying the metric gµν: 

and the metric can be derived from the tetrad or the A field respectively by 
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However this would lead to highly nonlinear and complicated equations, hence we introduce 
the limit of weak interaction between the electromagnetic and gravitational fields as was 
done also in [3]. As a result, the terms with ω’ vanish. In contrast to the further approxima-
tions made in [3] we do not neglect the time dependence. The Coulomb law (equation (41) of 
[3]) then leads to 

where ωa
b is the contravariant spin connection dual to the tetrad as before. We have sub-

sumed the term Ab’ at the right-hand side into the resonance current J0a. This may be justified 
as long as only the resonance behaviour is of interest. 

The Ampère-Maxwell law was given in [3] in a static form for the magnetic field only. We de-
rive a less restrictive form. From eq. (32) of [3] we obtain by inserting above equations (14) 
and (15) and neglecting the terms with ωa

b’ : 

Introducing the harmonic time dependence  

 exp(-iωt) 

of all quantities (including ωa
b) and using the vector identity (13) we finally obtain from (18), 

(19) the equations 

 

 

3 Approximation for the spin connections 
As already mentioned in section 2, the spin connection for the free electromagnetic field is 
dual to the tetrad. This holds approximately for weak interaction between electromagnetism 
and gravity. We use this approximation here. We have 
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with 

where εijk is the Levi-Civita tensor and ηab the Minkowski metric. In contrast to the usual defi-
nition of εijk the indices run from 0 to 3, the value set is larger than the number of indices. 
Permutations of {0,1,2}, {0,2,3}, {0,1,3}, and {1,2,3} have to be considered. In addition it is 
required to specify a numerical value for A(0). 

The approximation of the free electromagnetic field may be too restrictive in certain cases. 
For example Evans has shown [2] that in this case 

holds. Therefore equation (9) gets singular and the equation system is not well defined. A 
simple remedy is to add small statistical values to ωa

b in cases where ωa
b ≠ 0. This is not a 

solution based on physics, but up to now nothing is known about the dependence of the spin 
connections on the interaction between electromagnetism and gravitation. 

4 Source terms and boundary conditions 
In the previous section we have derived stationary equations for the resonance behaviour. 
To get numerical solutions of the equations we have to provide boundary conditions. Initial 
conditions are not required because we have no explicit time dependence. In such a situation 
the physical system under consideration has to be described completely by specifying the 
potential field on the outer and inner boundaries, and possibly its derivatives. This is a viable 
way for free space computations, but the resonance effects we are looking for will occur by 
influencing certain materials, so free space conditions are not sufficient. We have to find a 
way to describe these effects of matter within the definition volume without specifying the 
potential field at inner boundaries because this information is not known. 

Since ECE theory is a pure field theory, there are no particles of mass or charge a priori, 
these come out as a divergence of the fields. To obtain a practical solution we assume ex-
plicit source terms as in standard theory. The ECE field equations are in barebones notation: 
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In standard theory the first equation reads 

 
as there is no homogeneous current j. So we can add a source current term only to the sec-
ond equation. This is justified because the phenomenological source terms are contained in 
the original J. We split J into the resonant part JR due to interaction of electromagnetism and 
gravitation and the source current part JS. 

 
Consequently, the Ja terms in equations (11), (12) have to be replaced by 

 
The analogous holds for the equations of counter gravitation (20a,b). J~a corresponds to a 
conventional current density vector measured in units of A/m2. J~0a describes a static charge 
density distribution ρa given by 

   
and has the same units. ρa is a scalar, so the only polarization index of relevance is a=0. The 
current J~a is a vector with three polarization directions a=1, 2, 3. 

The question remains how to proceed with equations (9) and (10) which correspond to the 
resonant Gauss law and Faraday induction law. Both laws hold for free space and do not 
contain source terms in the limit of standard theory. We propose to solve the equations (11), 
(12) first (resonant Coulomb law and Ampère-Maxwell law) and insert the solution for the 
potential field A into eqs. (9) and (10). The latter equations should deliver then a homogen-
ious current. The frequency dependence of the resonance may be different from that of the 
inhomogeneous current. 

Next we discuss the boundary conditions. As already stated, we restrict ourselves to configu-
rations where the boundaries of the volume, where the equations are to be solved, lie in free 
space. Source charges and currents are far enough away from them so that we can expect 
an approximate free space behaviour there. For the resonance equations this means that the 
effects of spin connections are negligible and the potential field is dominated by the Poisson 
terms in the equations. 

All the relevant equations (11), (12), (20a,b) contain a leading second order derivative term. 
Far from the sources they behave like a Poisson equation. For a physically meaningful solu-
tion of the Poisson equation it is required that a condition of the boundary values is fulfilled. 
Interpreting the A field as a streaming field, it is required that the flow through the borders is 
equal to the sum of sources and sinks in the definition volume [8]. Otherwise the the process 
can not be stationary. This is described by the integral conditions 
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V is the definition volume, S the corresponding surface, and n the normal vector in outer di-
rection on the surface. Eq. (30) corresponds to a Neumann type boundary condition while eq. 
(31) represents a Dirichlet type boundary condition. This is similar to the Navier-Stokes equa-
tions in fluid dynamics where A0a corresponds to the scalar pressure and Aa to the velocity 
field [8]. 
     Region with significant curvature 

 
Fig. 1a. Electric field of a dipole (exact)  Fig. 1b. Electric field of a dipole with zero 
        boundary conditions 

 

In the case of resonant ECE equations we assume that the source term densities do not ex-
tend to the borders of the definition volume, see Fig. 1a,b. We select electrically neutral con-
figurations and can set 

 A0a = 0 

and 

 Aa = 0 

on all boundaries. Then eqs. (30), (31) are fulfilled trivially. The type of error is visible by 
comparing Fig. 1a (exact solution) with Fig. 1b (approximate solution). The difference should 
not be relevant in the interior of the definition volume where interaction effects of torsion and 
curvature will play a role. 

We finish this section by stating that condition (31) does not mean that the divergence of Aa 
vanishes in the definition volume. Only the average value of the divergence is zero. 

5 Solution scheme on a grid 
In this article we consider only rectangular grids and definition volumes. Furthermore we use 
the finite difference method for solving the equations. This means that all functions have to 
be computed at the grid points, and differential operators are to be evaluated by algebraic 
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expressions of some neighboring points. Let’s enumerate the grid points in x, y, z direction 
by indices i, j, k and assume a homogeneous grid spacing 

 ∆x = ∆y = ∆z = h. 

The partial derivative in x direction of a function f(x, y, z) discretized at grid points xi, yj, zk is 
approximated by 

 
and the Laplace operator by 

 
From these all other operators can be constructed (see Appendix A). 

To solve the resonance equations we use the successive overrelaxation (SOR) scheme 
which is well known from the literature [9] for partial differential equations without time de-
pendence. We describe this method shortly for the Poisson equation 

 
with a fixed function ρ (x, y, z). Discretization according to eq. (33) gives 

 
Writing it this form, a value for f at a grid point (i, j, k) can be computed from the surrounding 
grid points appearing at the right hand side. In this way the values for iteration n+1 are com-
puted from the preceding step n. The iterations are denoted as upper indices in parentheses. 
To obtain faster convergence (in some cases also to obtain convergence at all) the newly 
computed values f(n) are weighted with the former values by a mixing factor w by 

 
where w is to be chosen between 1 and 2 (therefore called “overrelaxation”). Convergence 
can be accelerated further by using the new values of ieration n+1 also at the right-hand side 
as soon as they have been computed in the current iteration sweep (Gauss-Seidel iteration). 
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Now the resonance equations (11, 12, 20a,b), which all contain a Laplace operator, can be 
formulated as an iteration scheme as described for the Poisson equation. For example, eq. 
(11) reads 

 
The discrete forms of the differential operators have to be inserted according to Appendix A. 
At the right hand side only potential fields of previous iteration n occur, thus maintaining the 
method introduced in eq. (35). 

The nonlinearities arising due to the spin connections have still to be addressed. The spin 
connections ωa

b are computed from the A fields as described by eq. (21). According to a 
method called Picard iteration [10], we compute ωa

b from A(n), obtaining effectively an iterated 
ωa

b
(n). Thus we maintain the iteration scheme of eq. (35) and extend it to non-linear equa-

tions. 

At this point all has been said about the solution of the stationary resonance equations. Fi-
nally we give an outlook how the explicit time dependence in the original version of the equa-
tions can be covered. Time discretization schemes are handled differently from space discre-
tization since an iterative solution of the time dependence is not possible. Time development 
has to be obtained in one step. 

Only the first time derivative should occur in the equations. Let’s consider eq. (4) for the 
resonance current. We can get rid of the second time derivative of Aa by defining a supple-
mentary vector field 

 
Inserting this in eqs. (3) and (4) leads to 
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The simplest way of numerically solving these equations is by forward discretization in time: 

 
The index n now describes the time step. In contrast to the symmetric scheme of eq. (32) this 
scheme is less precise, the error is of linear order instead of quadratic order in ∆t. Inserting 
(41) in eq. (40) leads to the time integration scheme (with abbreviation functions f and g de-
fined there) 

 
The time integration for Aa then follows from (38) by 

 
or 

 
The time derivative of the scalar component A0a does not appear in eqs. (3) and (4). The time 
dependence is implicit and needs to be solved by an iterative scheme similar to eq. (37). All 
variables except A0a have to be chosen for the new time step n+1. These are obtained from 
eqs. (42) and (43) before, and ωa

b has to be computed from them also. We will not go into 
further detail here. 
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This was only a short demonstration on how the time dependence of the resonance equa-
tions can be handled. More detailed considerations are required to obtain a numerically sta-
ble scheme. For example the right-hand side of eq. (37) should be defined by a mixture of 
the iteration steps n and n+1 (Crank-Nicolson scheme [11]). 

The boundary conditions have to be supplemented by an initial condition of the field variables 
all over the definition volume. This is not as easy as only to define values on the boundaries 
because the initial values have already to fulfil the equations which are to be solved. Several 
methods for resolving this problem have been mentioned in the literature for the Einstein 
equations of general relativity [5]. These methods should be considered for applicability. 

6 Conclusion 
It has been shown how the resonance equations of ECE theory for energy absorption and 
counter gravitation can be solved numerically. By assuming a harmonic behaviour of time 
dependence a stationary form could be derived. The equations can be solved by iterative 
methods. We have confined ourselves to the simplest form of geometry - a cubic grid. Alter-
natively, spherical or cylinder symmetry (e.g. for circulating currents in coils) could be ap-
plied. The solution method proposed is a straightforward overrelaxation scheme. The effi-
ciency can be enhanced further by applying multigrid methods [12]. For a more complicated 
geometry, finite element methods should be deployed. 

The equations for resonance absorption represent two independent sets of equations for the 
potential field. This is a consequence of the fact that the two structure equations of Cartan 
geometry are dual to one another. For getting solutions for the electric and magnetic field 
both sets of equations are required, but for the potential field one of them is sufficient, as far 
as the spin connections are not considered as independent variables. As a consequence, the 
homogeneous and inhomogeneous current are not independent in this approach. 

In the stationary case we have added source terms to the resonance equations for practical 
purposes. This was done in analogy to Maxwell theory so that these terms only show up 
where the inhomogeneous resonant current occurs. The homogeneous current has no coun-
terpart in Maxwell theory and can not be augmented by source terms. It is not restricted to 
free space scenarios and can occur in matter as well. 

Boundary conditions could be formulated in a simple manner which is adequate for configu-
rations embedded in empty space. Other configurations, for example unit cells of solids, have 
to be handled in a different way. 

The time dependent behaviour of the potential field can be studied by using numerical time 
integration schemes. A rough idea for this was outlined. Generally, methods having been 
developed for the Navier-Stokes equations can be applied, where also nonlinearities are to 
be dealt with. 

The resonance effects can alternatively be formulated as a dielectric theory [3]. Numerical 
schemes for this have to be worked out further. 
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9 Appendix A 
List of differential operators in Cartesian coordinates 

Be f a scalar field f(x, t) : R3xR1 → R1; u a vector field u(x, t) : R3xR1 -> R3. Then it is defined 

gradient: 

∇ f = (∂f/∂x1, ∂f/∂x2, ∂f/∂x3) 

gradient of a vector field: 

∇ (u) = (∂u1/∂x1, ∂u2/∂x2, ∂u3/∂x3) 

divergence : 

∇ ⋅ u = ∂u1/∂x1 + ∂u2/∂x2 + ∂u3/∂x3 

curl: 
∇ x u = (∂u3/∂x2 - ∂u2/∂x3, ∂u1/∂x3 - ∂u3/∂x1, ∂u2/∂x1 - ∂u1/∂x2) 

Laplace operator: 

∇2 f = ∂2f/∂x1
2 + ∂2f/∂x2

2 + ∂2f/∂x3
2 

Laplace operator of a vector field: 

∇2 u = (∂2u1/∂x1
2 + ∂2u1/∂x2

2 + ∂2u1/∂x3
2, 

 ∂2u2/∂x1
2 + ∂2u2/∂x2

2 + ∂2u2/∂x3
2, 

∂2u3/∂x1
2 + ∂2u3/∂x2

2 + ∂2u3/∂x3
2) 


