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Abstract

The experiments of Osamu Ide showed that transformers exhibit cur-
rent components hitherto unknown when switched on by steep pulses.
This behaviour has been be explained by Einstein-Cartan-Evans Theory
in a previous paper. In order to simplify calculations, an extended circuit
theory is developed on this basis. Oscillations of the inductance are shown
to account for the additional, exponentially decreasing current term. The
circuit equation is �rst developed theoretically and studied analytically.
Then precise solutions are obtained by simulation, showing that the exper-
imental curves of the Ide e�ect can be reproduced very well. A mechanism
for extracting energy is proposed.
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1 Introduction

When a voltage is applied to a serial resonance circuit, it is known from classical
electrodynamics that the current rises �rst linearly and then goes into satura-
tion. The inductance of the circuit hinders the current to jump to its �nal value
immediately. In a series of papers, Osamu Ide has described experiments re-
vealing an extra current in this process [1]- [3]. Actually there are two e�ects.
When voltage is switched on in a pulse, the current oscillates strongly for less
than a microsecond, then rises beyond the classical (linear) value in an expo-
nentially decreasing way. These e�ects can be seen in Fig. 1 which has been
taken from [6] where the e�ect has been veri�ed independently. In that paper,
both e�ects could be explained as interactions with the background or space-
time potential, which becomes e�ective in non-continuous processes, in this case
the hard switch-on of the voltage/current. In [6] the e�ects could be explained
well by the so-called Einstein-Cartan-Evans theory [4]- [5], which provides an
extensions of Maxwell-Heaviside theory on the electromagnetic sector.

A direct application of this theory is not easy for engineers, therefore we
derive a simpli�ed approach in this paper which is based on a slight extension
of classical circuit theory. Both the experimental and theoretical results of [6]
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showed that the modulation of circuit behaviour due to spacetime e�ects results
in a strong variation of the e�ective inductance. Therefore we will develop this
approach in the following.

2 Analytic curcuit theory

The general serial resonance circuit with inductance L, capacitance C, Ohmic
resistance R, obeys the circuit equation

d

dt
(LI) +RI +

Q

C
= U0 (1)

where Q is the charge at the capacitor and I the current. Normally the device
properties L, R and C are assumed constant in time. Then, by replacing I =
dQ/dt, a second-order di�erential equation is obtained:

L
d2Q

dt2
+R

dQ

dt
+
Q

C
= U0. (2)

However, if the inductance is not constant, from Eq.(1) follows:

dL

dt
I + L

dI

dt
+RI +

Q

C
= U0 (3)

or, rewritten,

L
d2Q

dt2
+

(
dL

dt
+R

)
dQ

dt
+
Q

C
= U0. (4)

Comparing with Eq.(2), we see that the time change of the inductance behaves
like an e�ective dynamic resistance

Reff =
dL

dt
+R (5)

which depends on time. Eq.(2) then reads

L
d2Q

dt2
+Reff

dQ

dt
+
Q

C
= U0. (6)

This is the equation of a damped enforced oscillation as before. However, in
the Ide experiment, we have a strongly oscillating current in the initial spike,
indicating that the inductance oscillates heavily under the viewpoint of circuit
theory. In particular dL/dt takes negative values for every second half-wave.
Assuming that the Ohmic resistance is small and the inductance variation is
high, we will have the case

Reff < 0 (7)

for about half of the time. The solution of the di�erential equation (6) then
has a non-oscillatory form. For sake of simplicity, we assume a constant driving
voltage U0 and constant value Reff . Then the analytical solution of (6) is

Q (t) = K1 exp

(
ω1 t−

Reff t

2L

)
+K2 exp

(
−ω1 t−

Reff t

2L

)
+ U1 C (8)
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with constants K1 and K2 and resonance frequency

ω1 =
1

2

√
R2

eff

L2
− 4

C L
. (9)

This solution holds for

R2
eff C − 4L > 0 (10)

which is ful�lled when Reff is large enough. From Eq.(8) can be seen that there
is always an exponentially growing solution if Reff < 0. The same holds for the
current which is the time derivative of (8):

I = K1

(
ω1 −

Reff

2L

)
exp

(
ω1 t−

Reff t

2L

)
(11)

−K2

(
ω1 +

Reff

2L

)
exp

(
−ω1 t−

Reff t

2L

)
.

Even if the constant K1 is set to zero in order to avoid exponentially growing
solutions as is often done in physical situations, the current (11) remains growing
due to sign reversal by Reff .

3 Simulation results

In the preceding section the e�ective resistance was made constant to be able to
obtain analytic solutions. Now we investigate the full equation (4) with dynamic
e�ective resistance (5). The capacitance has been omitted, i.e. we model the
current onset of a coil only as in the original experiments. As suggested in [6] L
is strongly oscillating in time with decreasing amplitude. We modeled this by a
function

L(t) = L0

(
1 − exp(− t

T1
) sin(ωt)

)
(12)

with a time constant T1 and oscillation frequency ω. The derivative of L(t) is
extremely sharp and had to be con�ned to values less than 103 H/s in order to
keep the simulation stable. The following parameters were used:

L0 = 0.04 H

R = 10 Ω

T1 = 800 µs

ω = 2π · 3 MHz

U0 = 50 V

The simulations were carried out with the simulation program OpenModelica [7].
The results are shown if Fig. 2 and can be compared with the experimental
curves of [6] presented in Fig. 1. A direct scaling of both curve sets was
not attempted but would be possible. The exponentially decreasing additional
current (green curve in Fig. 2) comes out quite exactly as in the experiment
(black curve in Fig. 1). There is an additional o�set in Fig. 1 whose origin is
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unclear but was observed by both Ide and Arenhold/Eckardt. This gives even an
additional enhancement of the spacetime e�ect. The oscillations of inductance
(modeled by 3 MHz) lead to an oscillatory �ne structure of the current which
may be in the order of precision of experimental measurement. As already
explained, the amplitude of dL/dt was arti�cially limited in order to not distort
the results. The e�ect is a kind of curve smoothing.

For making the Ide e�ect exploitable, the switching has to be repeated in
a periodic way. We modeled this by switching the voltage U0 on and o� in
rectangular pulses of 95% pulse width. Then the behaviour of Fig. 2 is repeated,
see Fig. 3. In the o� phases of the voltage the current starts going down as
expected. It would drop to zero if the voltage were permanently switched o�,
but the decrease is minimal due to the short time interval. In total there is a
current gain of about 60% at the end of the curve. After the �rst period, the
gain is nearly 100%, but with low current amplitude. It can be seen that the
additional current (green curve) does no more increase when the classical curve
(red) changes from linear to exponential behaviour.

In Fig. 4 the time oscillation of the inductance model L(t) has been graphed.
The envelope of the oscillation decreases exponentially but does not drop to zero
in the periodic time interval. Single oscillations cannot be resolved because of
the scaling.

4 Discussion and conclusions

It has been shown that a circuit model with variable inductance works well
for explaining the Ide e�ect. A rough analytical estimation could be veri�ed
by simulation and is in good qualitative agreement with measurements. Peri-
odic repetition of the switching process should enable gathering energy from
spacetime.

In a previous study [8], resonance of a �eld dependent solenoid was demon-
strated. Simple but well founded arguments gave the material properties such as
permeability as a parabolic function of the magnetic �eld. With reasonable sim-
pli�cations, the non-linear hyperbolic partial di�erential equations were shown
to reduce to a distorted wave equation which o�ered parabolic di�usion type so-
lutions showing ampli�cation e�ects similar to what was observed in this study.
Heterodyning behaviour was also observed, corresponding to the resonance for
the �rst standing wave in the solenoid core. At higher frequencies, the magnetic
�eld becomes asymptotically linear in time, indicating some form of resonant
growth as indicated in this paper.

The beauty of the method described in this paper, is that the calculation
of �eld dependent device properties is separated from the resonant calculation.
Rather than solve the di�cult time dependent non-linear hyperbolic di�erential
equation set generated by electromagnetism, we solve a single non-linear ordi-
nary di�erential equation, such as equation (6) for the desired circuit. One then
can use ECE solution techniques to design speci�c devices that would satisfy the
parametric equations such as given by equation (12) for this speci�c example.
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Figure 1: Measurements of Ide e�ect, taken from [6].

Figure 2: Simulation results. red: current from standard theory, green: addi-
tional current, blue: total current.
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Figure 3: Periodic switching of device in steps of 400 µs. red: standard current,
green: additional current, blue: total current, purple: voltage (scaled).

Figure 4: Time behaviour of inductance model for periodic switching (oscillating
around 0.04 H).
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