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Abstract

According to statements by Milkovic and various inventors of roto-
verter systems, it should be possible to extract energy from rotating sys-
tems with at least two revolving or oscillating units, which corresponds
to a mechanism for extracting spacetime energy. We base our analysis
and modeling on the approach of an anonymous author who calculated
the dynamics of a double pendulum according to classical mechanics, and
proposed that with a certain load characteristic, it gains energy. We have
proven that the author did not use the underlying equations of motion
correctly when applying an external load. If they are put into canonical
form, i.e., used in the intended way, there is no energy gain. We have
investigated this for different types of load momenta. Such a system can
serve as a source of energy only if one adopts non-conventional physical
mechanisms. For this, a “spacetime resonance” was used in accordance
with ECE theory. This then results in chaotic behavior, which, on aver-
age, leads to a significant gain in energy, with constant useful power being
withdrawn from the system.
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1 Introduction

Research into energy from spacetime (which has also been called vacuum energy,
zero-point energy, and space energy) includes approaches that attempt to obtain
energy using mechanical systems. The first known system of this type was
the Bessler wheel. More recently, the Milkovic pendulum [1] and the Würth
gearbox [2] have become known. However, there is no clear evidence of an
energy gain with these devices. Qualitative descriptions from engineers and
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inventors who deal primarily with purely static configurations suggest that an
energy gain is plausible.

However, mechanical devices are dynamic systems, because internal forces,
and positions of the constituent parts change over time. Therefore, a complete
description of the functionality is only possible using dynamical considerations
and models.

The dynamics of mechanical systems can be described very elegantly with
the methods of classical mechanics. When a model is structured simply enough,
i.e. when it is a system of mass points, one uses the Lagrangian mechanics,
which goes back to Leonhard Euler (1707-1783) and Joseph-Louis Lagrange
(1736-1813), whose equations of motion are called Euler-Lagrange equations.
Later, William Rowan Hamilton (1805-1865) brought these into a form that
can be solved numerically, and today efficiently on a computer.

When it comes to systems of extended solids, either rigid or deformable
bodies, the newer finite element method is used. It has been used very success-
fully in engineering since the advent of modern computers, although it is very
computationally intensive.

As part of an attempt to explain a possible excess energy in the Milkovic
pendulum, an anonymous author carried out a Lagrangian calculation [3]. To
the best of our knowledge, this is the most in-depth analysis of this system. We
checked the calculation, but found a serious modeling error by the author. That
makes his results, which actually show an energy surplus, quite questionable.
As a second system, which is based on the principle of the double pendulum,
we examined the planetary gear according to Würth [2]. These results will be
reported in a subsequent paper. This will probably be the first time that the
Würth gearbox has been investigated in this modeling depth. In the following,
we first briefly describe the application class of the double pendulum and the
Lagrange method before we go into the results of the double pendulum.

2 Calculation method for the double pendulum

A double pendulum consists of two pendulums that are attached to one an-
other, with each one having a pendulum body with a mass. When impacted
in a vertical position, these masses perform unpredictable oscillations, which
is a well-known example of a chaotic system. Lagrangian mechanics requires
coordinates that correspond to the number of degrees of freedom. Here they are
the angular deflections ϕ1 and ϕ2 from the vertical, see Fig. 1. To calculate the
Lagrangian

L = T − U (1)

one needs the kinetic energy T and the potential energy U of the two masses.
The easiest way to get the kinetic energy is from the Cartesian coordinates.
They are (see Fig. 1):

x1 = l1 sin(ϕ1), (2)

y1 = −l1 cos(ϕ1), (3)
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and

x2 = x1 + l2 sin(ϕ2), (4)

y2 = y1 − l2 cos(ϕ2). (5)

This gives the kinetic energy of the masses m1 and m2:

T1 =
1

2
m1(ẋ21 + ẏ21), (6)

T2 =
1

2
m2(ẋ22 + ẏ22), (7)

T = T1 + T2. (8)

Figure 1: Coordinates of the double pendulum.

The dot denotes the time derivatives. The potential energy follows from the
force of gravity in the y direction:

U = m1g y1 +m2g y2 (9)

with g being the gravitational acceleration. The Lagrange function (1) is thus
completely determined. The equations of motion follow from the Euler-Lagrange
equations, where qi stands for the coordinates ϕ1 and ϕ2:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0. (10)

Conservation of energy applies to these equations, because they are derived
from this principle. In addition, one can introduce dissipation functions Di and
generalized forces Qi. A generalized force in our case is a torque. Then the
equations take the form:

d

dt

∂L

∂q̇i
− ∂L

∂qi
+
∂Di

∂q̇i
= Qi (11)
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and there is no longer any conservation of energy. We need this case here, since
the system is supposed to provide additional energy. The dissipation functions
can be replaced by

QRi = −∂Di

∂q̇i
(12)

and be traced back to generalized forces, with QRi denoting any residual forces
that are not covered by the dissipation functions.

The evaluation of equations (10) can lead to very complicated equations of
motion. In the case of the double pendulum, they are just about manageable.
In other cases, such as the planetary gear, they are so complicated that it is no
longer possible to calculate them by hand. We use the computer algebra system
Maxima for this. The Euler-Lagrange equations are two coupled differential
equations for the variables ϕ̈1 and ϕ̈2. They are linear in these two variables
and have to be solved for them so that the numerical solution (time integration)
can be carried out. The following equations then result:

ϕ̈1 =
[

(l1 l2m2 sin (ϕ2) cos (ϕ2 − ϕ1)− (l1 l2m2 + l1m1 l2) sin (ϕ1)) g

+
(
l21 l2m2 ϕ̇

2
1 cos (ϕ2 − ϕ1) + l1 l

2
2m2 ϕ̇

2
2

)
sin (ϕ2 − ϕ1)

− l1Q2 cos (ϕ2 − ϕ1) + l2Q1

]
· 1

l21 l2m2 sin (ϕ2 − ϕ1)
2

+ l21 l2m1

, (13)

ϕ̈2 =
[ ((

l1 l2m
2
2 + l1m1 l2m2

)
sin (ϕ1) cos (ϕ2 − ϕ1)−

(
l1 l2m

2
2 + l1m1 l2m2

)
sin (ϕ2)

)
g

+
((
−l21 l2m2

2 − l21m1 l2m2

)
ϕ̇2
1 − l1 l22m2

2 ϕ̇
2
2 cos (ϕ2 − ϕ1)

)
sin (ϕ2 − ϕ1)

−Q1 l2m2 cos (ϕ2 − ϕ1) + l1Q2m2 + l1m1Q2

]
· 1

l1 l22m
2
2 sin (ϕ2 − ϕ1)

2
+ l1 l22m1m2

. (14)

3 Results

3.1 Verification and comparison with reference [3]

The aim of our calculations was initially to verify the results in reference doc-
ument [3]. We first compared the equations of motion cited in this document
with ours, and there was not a complete match. The anonymous author has
not given the source of his equations and only speaks of “literature”. Since this
literature could have come from a time when there was no computer algebra, it
is possible that there was a calculation error. It wouldn’t be the first time such
errors have been found in textbooks.

For comparison, we used the same parameters for the double pendulum as
the anonymous author, see Table 1. Here ω1,2 is to be equated with the angular
velocity ϕ̇1,2. The calculation was initially carried out without external forces
and without gravitation. The initial angular velocity of the second pendulum
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m1 1 kg
m2 0.1 kg
l1 0.2 m
l2 0.1 m
ϕ1,initial 0
ϕ2,initial 0
ω1,initial 0
ω2,initial 100·π rad/s

Table 1: Parameters and initial values for calculating the double pendulum.

is 50 Hz, so it is quite fast. In his Fig. 2, in addition to the time course for ω1,
the author also gives a “Pivot Torque” and a “Pivot Power”, i.e., a torque and
a power on the fixed axis, which he calculates as follows:

τpivot torque = m1l
2
1ϕ̈1, (15)

Ppivot power = m1l
2
1ϕ̈1ω1. (16)

This is where the accelerations on the axis appear. We have also evaluated these
variables and shown them in Fig. 2. The angular velocity ω2 results from the
initial values and is exactly the same as in Fig. 2 of the reference document.
Torque and power are a few percent lower, but otherwise the same. That may
be an influence of the different equations of motion. Each of torque and power
cancel out on average over time. The author speaks of reactive power, which
has to be the case, since no power is taken out of the system.

Next, we look at the energy balance. Since we have neither external forces
nor gravity, there are only kinetic energy contributions that have to be constant
in sum for both masses. This is the case, as can be seen from Fig. 3. The sum
corresponds to the initial rotation of the second mass at 50 Hz, which is a little
over 49 joules. The same curve is found in Figure 3 of the reference document.
So far, there is agreement.
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Figure 2: Angular velocity [rad/s], Pivot torque [Nm] und Pivot power [W].

Figure 3: Kinetic energies [J] of both masses and total energy.
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Figure 4: Kinetic energies [J] of both masses and total energy for external load,
canonical form.

Figure 5: Kinetic energies [J] of both masses and total energy for external load
according to [3].
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We now apply an external load (a braking torque) to the fixed axis. This is
modeled as a generalized force in the form

Q1 = − µ
l1
ω1, (17)

where µ is a constant. We base this on reference document [3]. The braking
torque is proportional to the angular velocity. The calculation with µ = 1 shows
that the total energy decreases exponentially, see Fig. 4. At the same time, the
frequency slows down. The rotational energy of the outer, fast pendulum is
transferred to the inner pendulum, where it is removed from the system by the
load torque. The fact that the braking torque, which only acts on the axis of
the first pendulum, also acts on the outer pendulum can be seen directly from
the equation of motion (14). In addition to Q2 (not used here), this equation
also contains the braking torque Q1.

The anonymous author of [3] received completely different results for the
braking torque (14). He did not use the concept of generalized force as prescribed
by the Lagrangian mechanics, but changed equation (13) for the acceleration of
ϕ1 a posteriori by making the replacement:

ϕ̈1 → ϕ̈1 +
µ

l1
ω1. (18)

Here the parameter µ has different physical units than in (17), but that is not
decisive. More importantly, as a result of this arbitrary substitution, the braking
torque only acts on the movement of the inner pendulum and the rotation of the
outer pendulum is not affected. Our calculation with this approach results in
the energy curve of Fig. 5, which is identical to that of Fig. 6 in [3]. The total
energy only decreases slightly at the beginning and then remains constant. Only
the form of oscillation changes; the oscillation frequencies are doubled due to the
external braking torque. As we have explained, this is an arbitrary intervention
in the “physics” of the double pendulum. Therefore, all results in [3] that are
based on this must be regarded as unphysical, unfortunately.

3.2 Effect of different load torques

We now investigate how the load torque has to be changed so that there may
be an increase in energy, if one uses the correct equations of motion. With the
approach

Q1 = − µ
l1
|ω1| (19)

(modulus of ω1) and µ = 0.1 the result of Fig. 6 comes out. A phase change
occurs for both pendulums, whereby – after an initial decrease in the total energy
– there is a gain. The question is whether this corresponds to an energy gain
in the overall system or whether this increase is due to the supply of external
energy. To this end, we examine the external torque or braking torque τext and
the input or output power Pext. The following applies:

τext = Q1 = − µ
l1
|ω1|, (20)

Pext = τextω1. (21)
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Both are shown in Fig. 7. The torque, based on the modulus in Eq. (20), is
always negative. For the phases in which the angular velocity ω1 is also negative,
this leads to a torque of the same sign, i.e., the mass m1 is driven in this
direction and the angle even reverses direction. Accordingly, the performance
(21) is positive, i.e., energy is supplied, as can be seen from Fig. 7. Therefore,
this is a drive effect, and the system does not provide any energy gain.

One can avoid the drive phase by only using real braking phases for the
braking torque:

τext = Q1 =

{
− µ
l1
ω1 for ω1 > 0,

0 else.
(22)

Then the total energy adjusts to a final value after an initial braking phase, as
shown in Fig. 8, for µ = 0.1. The external energy flow can be determined via
the integral

Eext =

∫
Pextdt. (23)

The numerical evaluation (Fig. 9) shows that in fact energy initially flows away
(negative values), but then the energy remains constant, i.e., the drain has
“dried up”. Therefore, there is no energy gain to be drawn from the system
itself in this way.

Figure 6: Kinetic energies of both masses and total energy for load (19).
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Figure 7: External load torque and power for load (19).

Figure 8: Kinetic energies of both masses and total energy for load (20).
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Figure 9: Externally released energy for load (20).

3.3 Effect of interaction with “spacetime energy”

To get the desired effect of energy gain, we have to consider mechanisms that
cannot be found in conventional physics. We assume a resonance mechanism for
this, which is predicted by ECE theory [4–6]. This mechanism was calculated
for electromagnetic systems, but due to the complete equivalence between elec-
tromagnetic and mechanical systems, it also applies to dynamics. According to
Eq. (20) in [6], the resonance equation applies to

∂2A

∂t2
+ ωt

∂A

∂t
+
∂ωt
∂t

A =
1

ε0
J, (24)

where A is the vector potential, J is the electrical current density and ωt is the
spin connection (a frequency) of Cartan geometry. Applied to mechanics, this
equation reads:

∂2Q

∂t2
+ ωt

∂Q

∂t
+
∂ωt
∂t

Q = GJm, (25)

where Q is the mechanical equivalent of the vector potential, Jm is the mass
flow density and G is the Einstein constant. Q has the units of a velocity, and
one can consider it as “aether flow”. If we restrict ourselves to the rotation
component (the ϕ component Qϕ) of Q and assume a linear time dependence
of ωt, this equation can be written as:

d2Qϕ
dt2

+ α
dQϕ
dt

+ ω2
0Qϕ = GJϕ, (26)
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and with a periodic excitation Jϕ = GJ0 cos(ωt) as:

d2Qϕ
dt2

+ α
dQϕ
dt

+ ω2
0Qϕ = GJ0 cos(ωt). (27)

This is the equation of a damped resonance with a resonance frequency ω0 and
a damping constant α. The solution to this differential equation is:

Qϕ = GJ0
αω sin (ωt) +

(
ω0

2 − ω2
)

cos (ωt)

(ω2
0 − ω2)2 + α2ω2

. (28)

For α ≈ 0 the solution is simplified to

Qϕ = GJ0
cos (ωt)

ω2
0 − ω2

, (29)

which means a resonance increase of Qϕ of infinite, i.e., arbitrarily high strength.
We now apply this to the double pendulum. We assume that the outer pendulum
rotates relatively quickly, as assumed in the previous calculations. Then it makes
sense to assume an energy transfer due to the rotational potential Qϕ. In the
Lagrange formalism, this then appears as the external torque Q2:

Q2 = Qϕ = GJ0
αω2 sin (ω2t) +

(
ω0

2 − ω2
2
)

cos (ω2t)

(ω2
0 − ω2

2)2 + α2ω2
2

. (30)

We have set ω = ω2, the angular velocity of the outer pendulum. So that an
influence of Q2 becomes visible, we have to place the initial value of ω2 close to
the resonance frequency ω0. In addition, we assume a decrease in energy due to
deceleration on the central axis of rotation, as previously modeled by Eq. (17):

Q1 = − µ
l1
ω1. (31)

The new constants and initial values are listed in Table 2, resulting in the
kinetic energy curve shown in Fig. 10. The resonance structure of Q2 creates
chaotic behavior in parts, which makes numerical stability of the result difficult.
However, the solution shown could be reproduced qualitatively when the time
integration step size ∆t was varied. In Fig. 10, the kinetic energy calculated
from the initial conditions is also shown. You can see that the resonance provides
a significant amount of additional energy, except in an initial transient range.

µ 0.05
GJ0 50 000
α 5.0
ω0 11·π
ω2,initial 10·π

Table 2: Parameters and modified initial values for calculating the spacetime
energy effect.
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Figure 10: Kinetic energies of both masses, total energy and initial energy Ekinit
with spatce energy coupling.

Figure 11: Externally emitted energy with space energy coupling.

Since we have taken the braking force into account, the energy increase
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takes place with the release of useful energy. This was calculated according to
Eq. (23) (as for Fig. 9) and is shown in Fig. 11. After a settling phase, an
approximately constant amount of energy per time unit is emitted, i.e., we can
withdraw a constant continuous output from the system. We have thus found
a possible mechanism for a double pendulum that is fed by spacetime energy,
provided that the prediction made by ECE theory actually applies and can be
demonstrated in the experiment.

4 Summary

The extraction of power from a system with two coupled, vibrating units,
claimed by Milkovic and the anonymous author, could not be confirmed in
this study. A classical approach to power extraction always leads to a decrease
in rotational energy, i.e., a conservation of the total energy, which is to be ex-
pected from classical rotating systems. Such a system can only generate energy
from itself if it is in exchange with an external energy reservoir, for example,
the space energy of the non-empty vacuum. The model developed in this study
has shown that rotary fields of the vacuum can provide such an effect. Never-
theless, any device that is claimed to interact with such an energy source still
requires proper scientific verification, including reproducibility and repeatability
of experiments.
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