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Abstract

Through the ECE series of papers, we have provided theoretical re-
search into counter gravitation and energy from spacetime. In this paper,
we present two methods that can even be understood on a classical level.
The momentum of the electromagnetic field is used to counteract gravita-
tion, and a resonance mechanism of this field is used to create mechanical
resonance for energy transfer from spacetime.
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1 Introduction

In ECE theory [1–5], several developments have shown that interactions are
possible with the spacetime or vacuum, for example, by the resonant Coulomb
law [1] and the Ampère-Maxwell law [6]. In the view of ECE theory, electro-
dynamic and mechanical systems, which are usually considered to be closed
systems, have a connection to the surrounding spacetime or vacuum or aether.
This makes them open systems, and allows energy to be transferred from/to
the vacuum. In standard physics, this is considered to be possible only in very
restricted situations, for example, if the quantum vacuum is involved. In this
paper, we describe a new method based on momentum transfer from electrody-
namic to mechanical systems. The structure of spacetime itself does not need
to be considered to the extent that is required for other methods.

2 Canonical momentum

In mechanics, the momentum of a moving mass is

pm = mvm, (1)
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where m is the mass of a body and vm is its velocity. When the mass moves
in a gravitational field g, this field has its own momentum. According to ECE
theory, the momentum of the gravitational field is

pg = mQ, (2)

where Q is the vector potential of the gravitational field. This is not known
in Newtonian theory and is very problematic (or does not appear at all) in
Einstein’s general relativity. We can compare the above equation with electro-
dynamics, where the magnetic vector potential A generates the field momentum

pA = qA, (3)

acting on a charge q. The mechanical vector potential Q in Eq. (2) has the
dimension of a velocity, so we can denote it by vg and write

pg = mvg. (4)

The canonical momentum of classical mechanics is the sum of all momenta:

pc = pm + pg = mv + mvg. (5)

Only the mechanical (and not the canonical) momentum is measurable. There-
fore, the Hamiltonian (or total energy) is defined using the measurable momen-
tum only. In the non-relativistic case with potential energy U , the Hamiltonian
is

H =
1

2m
(pc − pg)

2
+ U =

1

2
mv2 + U. (6)

The Lagrangian L can be derived from Hamilton’s equation

H =
∑
j

pj q̇j −L , (7)

where qj are the generalized coordinates and pj are their momentum compo-
nents. The result is

L =
1

2
mv2 + mv · vg − U (8)

(see Section 9.3.2 of [5]).

3 Equations of motion

We will now study the question of whether the gravitational force on the Earth’s
surface can be counteracted by a field momentum (which can only be produced
by electromagnetism). We restrict the concept of the canonical momentum to
one-dimensional motion (like in the X direction) because, in one dimension, we
simply have

pA = qA (9)
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with charge q and vector potential A. To obtain the equation of motion, we
apply Lagrange theory. Using the field momentum of electromagnetism instead
of gravitation, the Lagrangian (8) becomes

L =
m

2
Ẋ2 + qAẊ − U. (10)

The potential energy in the constant gravitational field at the Earth’s surface is

U = mgX (11)

with g=9.81 m/s2. For a static A field, the equation of motion from the La-
grangian is simply

Ẍ = −g. (12)

This is the equation of free fall. If we assume a time dependence of the vector
potential, the Lagrangian is

L =
m

2
Ẋ2 + qA(t)Ẋ −mgX, (13)

and the Euler-Lagrange equation is

Ẍ = − q

m
Ȧ(t)− g. (14)

We see that gravitational acceleration g can be counteracted, if q and Ȧ have a
suitable sign.

4 Examples

4.1 Counter gravitation

We consider examples of Eq. (14) which lead to a growing X(t). This means
that gravity is counteracted by the momentum of the vector potential. For

A(t) = −A0 t
n, (15)

the A term in the Euler-Lagrange equation (14) becomes positive and outper-
forms the gravitational term −g after a short time. It has to be n ≥ 1 to obtain
growing curves. Two examples with n = 1 and n = 2 have been solved numer-
ically and are graphed in Fig. 1 using a logarithmical scale. The results can
also be obtained analytically and are polynomials in t. The general solution of
Eq. (14),

Ẍ = − q

m
A0 n tn−1 − g, (16)

is

X = − A0q

m (n + 1)
tn+1 − 1

2
g t2 + c1t + c2 (17)

with constants c1 and c2.

3



Eq. (17) contains the charge-to-mass ratio q/m that is known from the
Millikan experiment, where it is related to electrons. To check if this method is
suited for macroscopic engineering, we have to insert some realistic values for
the parameters. From Eq. (14), we see that the gravitational acceleration g is
effectively counteracted, if∣∣∣ q

m
Ȧ
∣∣∣ ≈ g. (18)

With g ≈ 10 m/s
2
, q = 10−4 C and m = 1 kg, we obtain

Ȧ ≈ mg

q
= 105 V/m. (19)

From this, the inverse rising time for A can be estimated to be

1

∆t
=

Ȧ

∆A
(20)

by using

Ȧ ≈ ∆A

∆t
. (21)

We assume that A is increased periodically in cycles. Setting the maximum
amplitude ∆A = Amax = 10−4 Vs/m, we obtain a frequency for these cycles of

f =
1

∆t
=

Ȧ

Amax
=

105

10−4

1

s
= 109 Hz. (22)

Please note that a cycle frequency in the 1 GHz range is a technical requirement.

Figure 1: Trajectories X(t) for two values of n according to Eqs. (14/15).

4.2 Energy from spacetime

As a second example, we consider a harmonic oscillator in an external momen-
tum field. Instead of a driving force, we use an oscillating vector potential

A(t) = A0 cos(ωt). (23)
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The potential of the repulsive force is

U =
1

2
kX2 (24)

with the spring constant k. In a driven oscillator, the resonance frequency is

ω0 =

√
k

m
. (25)

Then, the Euler-Lagrange equation (14) is

Ẍ +
k

m
X = A0 ω

q

m
sin(ωt), (26)

which is an equation of an undamped, forced oscillation, giving resonance at
ω = ω0. The vector potential term qA, acts as a driving force, even though it is
a momentum and not a force. For ω → ω0, the amplitude grows to infinity. The
benefit of this approach is that no minimum value of the momentum amplitude
is required, so that a resonance can be generated even by small values of A0 and
q. An example is graphed in Fig. 2.

As in the preceding example, we will now determine the physical parameters
for a technical implementation. With A0 = 10−4 Vs/m, q = 10−4 C and m =
1 kg, we obtain

A0
q

m
= 10−8m/s. (27)

From Eq. (26), it would require a frequency of ω ≈ 108 Hz to obtain a driving
term in the range of unity. It could be that an electric resonance circuit is easier
to construct for realizing the desired effect.

Figure 2: Trajectories Ẋ(t) and X(t) for a driven harmonic oscillator.
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5 Conclusions

The described mechanisms can be used to extract energy from spacetime or to
directly counteract gravitation. For the resonance mechanism, the important
point is that the driving force has to operate without a feedback effect. The
mechanism that generates A must be independent of the amplitude X of the
oscillator. The vector potential may arise from the vacuum or aether. It can
be created by a magnetic field, for example. The condition of decoupling is
fulfilled for a permanent magnet, where the vector potential is replenished by
the elementary magnets of the material from the vacuum, even if its amplitude
is diminished by driving the oscillator. In the examples described, we need
a time-varying vector potential. This could be realized by a toroidal coil, for
example. It must be noted, however, that coils with standard cores work only
for frequencies up to 1-2 MHz. For higher frequencies, special technologies are
necessary. This paper should give ideas to engineers for inventing new types of
applications.
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