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Abstract

m theory was introduced to replace Einstein’s erroneous field equa-
tion. The new theory was applied in the macroscopic realm to problems
of gravitation by using Lagrange theory. In this paper, we extend the
underlying formalism to the full range of Cartan geometry, obtaining all
internal quantities like spin connections for a given potential. The results
are valid for both electromagnetic and gravitational central structures.
We obtain a new central force that stems from the geometric structure
of spacetime itself. In addition, a rotational field appears, although there
are no rotational parts in the potential. The approach of m theory, which
is based on the line element of general relativistic spacetime, can be gen-
eralized without essential changes to the results.

Keywords: Unified field theory; m theory; central symmetry; gravitation;
electromagnetism.

1 Introduction

ECE theory is the physical interpretation of Cartan geometry [1–5]. It has
been under development since 2003 for use in many fields of physics. It re-
places Einstein’s theory of general relativity, which is restricted to curvature,
by introducing torsion into theoretical physics. Torsion was inferred by Cartan
as a completion of Riemann geometry, which only contains curvature. Torsion
cannot be neglected, because curvature is always inter-connected with torsion,
and setting torsion to zero leads to contradictions. Therefore, Einstein’s field
equation is no longer tenable and can only be considered as an approximation
in weak fields, where it flows into ECE theory under certain preconditions [7].

What has retained its value, however, is the metric of spacetime, which
describes the curvilinear coordinates that are found both in Einstein’s general
theory of relativity and in ECE theory. m theory [5] was derived from this metric
and describes the distortion of the coordinates in a centrosymmetric geometry.
In the series of UFT papers, it has been applied to cosmology and the quantum
world. Through m theory, the unification of the quantum theory with general
relativity was achieved [6].
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In [5], the metric of m theory has been combined with Lagrangian mechanics.
Valuable results in the field of relativistic mechanics have been obtained from
this approach. In particular, the deflection of light by heavy celestial objects
could now be described correctly in a parameter-free manner. In this paper,
we extend the possible uses of m theory. In order to cover the complete range
of physics described by Cartan geometry, we fully integrate m theory into this
geometry. To accomplish this, the metric must first be expressed by the Cartan
tetrad. This will allow the full range of physics covered by Cartan geometry to be
calculated, from the potentials to the Christoffel symbols and spin connections
to the force fields of mechanics and electrodynamics.

It has already been shown in [5] that the diagonal metric of m theory can
be converted into a diagonal tetrad structure. To this tetrad we then apply the
complete calculation mechanism of Cartan geometry, as described in [5] and [8].
This leads to interesting insights when, for example, the m function goes to zero
at an event horizon or at the center of the coordinate system. The function m(r)
describes a radial space density or aether density, and a significant decrease in
this density leads to unique effects.

2 Connection of the general relativistic line el-
ement with Cartan geometry

Within this paper, we will use the metric of a non-constant, centrally symmetric
spacetime that is different from Minkowski space. We will base our development
on a metric that is common in Einstein theory, but we will develop our method
within ECE2 theory, i.e., Cartan geometry. Nonetheless, this a development of
“true general relativity”, even in the sense of standard physics.

According to Section 2.1.3 of [5], the squared line element in a space with
curvature and torsion is

ds2 = gµνdx
µdxν , (1)

where gµν is the symmetric metric and dxµ is the differential of the spacetime
coordinate xµ. In a Minkowski space for a spherically symmetric spacetime,
this takes the form

ds2 = c2dt2 − dr2 − r2dθ2 − r2 sin(θ)2dφ2 (2)

with a time coordinate x0 = ct, radius coordinate r, polar angle θ and az-
imuthal angle φ. In a general spherically symmetric spacetime with torsion and
curvature, the line element has to be generalized as described in Chapter 7 of [9]:

ds2 = c2m(r, t)dt2 − n(r, t)dr2 − r2dθ2 − r2 sin(θ)2dφ2. (3)

m(r, t) and n(r, t) are general functions describing the distortion of spacetime by
a central point mass at r = 0. Only the radial and time coordinates are affected.
The angular parts remain unchanged because of the rotational symmetry. It was
shown in [9] that the line element can be simplified further by the replacement

n(r, t) =
1

m(r, t)
, (4)
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and that the time dependence of m(r, t) can be rolled over to the time coordinate.
Therefore, the simplified line element reads

ds2 = c2m(r)dt2 − dr2

m(r)
− r2dθ2 − r2 sin(θ)2dφ2. (5)

This form is used in Einstein’s field equation, in which the Ricci tensor is zero
and an expression is derived for m(r) in the vacuum, leading to the Schwarzschild
metric. In ECE2 theory, we use this form for simplicity, but we can freely define
the function m(r). Comparing Eq. (1) with Eq. (5), it follows that the metric
is diagonal and the metric coefficients are

g00 = m(r), g11 = − 1

m(r)
, g22 = −r2, g33 = −r2 sin(θ)2. (6)

This metric-based theory, which we have called m theory [5], can also be devel-
oped from Cartan geometry itself. In Cartan geometry, the basis element is the
tetrad, and the metric follows from the tetrad [5] by

gµν = n qaµq
b
ν ηab, (7)

where qaµ are the tetrad elements, ηab is the Minkowski metric of tangent space,
and n = 4 is the dimension of the base manifold. The metric does not generally
allow the tetrad to be determined uniquely. In this case, however, the metric is
diagonal. We can assume that the tetrad matrix is diagonal also, because we do
not consider specific polarization effects of Cartan geometry. Therefore, Eq. (7)
reduces to the diagonal elements in both the base manifold and tangent space,
and we obtain

q
(0)

0 =
1

2

√
m(r), q

(1)
1 =

1

2
√

m(r)
, q

(2)
2 =

r

2
, q

(3)
3 =

r sin(θ)

2
. (8)

This is the connection of m theory to Cartan geometry.

The position vector in m space is

r =
r

m(r)1/2
er, (9)

and the velocity in m space with two spatial dimensions is

v = ṙ =
1

m(r)1/2

(
ṙer + rφ̇eφ

)
. (10)

We can use the variable name

r1 = r1er =
r

m(r)1/2
er, (11)

so that the velocity becomes

v1 = ṙ1 = ṙ1er + r1φ̇eφ. (12)

A new time variable can be defined by

t1 = m(r)1/2t. (13)
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r1 and t1 are the characteristic variables of m space.
From the line element (5) of m space, it follows that

ds2 = c2m(r)dt2 −
(
dr1

dt

)2

dt2 = c2dt21 − v2
1dt

2. (14)

In plane polar coordinates related to the observer space, this becomes

ds2 = c2

(
m(r)− ṙ2 + r2φ̇2

m(r)c2

)
dt2 (15)

=
c2dt2

γ2
.

Thus, the general relativistic γ factor of m space is defined by

γ =

(
m(r)− ṙ2 + r2φ̇2

m(r)c2

)−1/2

. (16)

The linear momentum of m space is

p1 = γmv1 = γm
v

m(r)1/2
. (17)

3 Computational basis and examples

In [8], it has been shown how all Christoffel symbols, spin connections, and
curvature and torsion tensors are derived from the Cartan tetrad. Here, we
only repeat the variable names and what they represent:

Γρµν : Christoffel connection

ωaµb : spin connection

Rλρµν : Riemann (curvature) tensor

Tλµν : torsion tensor

Rabµν : curvature form

T aµν : torsion form

Ea : electric field

Ba : magnetic field

Λλµν : dual Christoffel connection

ω a
(Λ) µb : dual spin connection

According to Eq. (8), the tetrad matrix is

(qaµ) =


1
2

√
m(r) 0 0 0
0 1

2
√

m(r)
0 0

0 0 r
2 0

0 0 0 r sin(θ)
2

 , (18)
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and from this the metric follows:

(gµν) =


m(r) 0 0 0

0 − 1
m(r) 0 0

0 0 −r2 0
0 0 0 −r2 sin(θ)2

 . (19)

The determinant of the metric is

det(gµν) = − 1

r4 sin(θ)2
. (20)

Obviously, it is independent of the m function.
The execution of the computer algebra code developed in [8] gives all curva-

ture/torsion parameters and connections. More of them are zero than non-zero,
because the tetrad is diagonal. Some non-vanishing results are

Γ0
01 = −Γ0

10 = −
dm(r)
dr

2m(r)
(21)

Γ2
12 = −Γ2

21 =
1

r
(22)

ω
(0)

0(1) = ω
(1)

0(0) = −
dm(r)
dr

2
(23)

ω
(1)

2(2) = −ω(2)
2(1) =

√
m(r) (24)

Λ2
03 = −Λ3

02 =
1

r
(25)

ω
(2)

(Λ) 1(2) = −1

r
(26)

R0
202 = −R0

220 = −
r dm(r)

dr

2
(27)

T 0
01 = −T 0

10 = −
dm(r)
dr

m(r)
(28)

R
(0)

202 = −R(0)
220 = −

√
m(r)dm(r)

dr

2
(29)

T
(0)

01 = −T (0)
10 = −

dm(r)
dr

2
√

m(r)
(30)

The resulting electric and magnetic force fields for the four polarization direc-
tions are

E(0) =
A0c

2

−
dm(r)

dr

2
√

m(r)

0
0

 , (31)

E(1) = E(2) = E(3) = 0, (32)

B(0) = B(1) = 0, (33)

B(2) =

 0
0
−B0

 , B(3) =

−C0r cos θ
B0 sin θ

0

 (34)
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with constants A0, B0 and C0. A0 is the primordial vector potential A(0) of ECE
theory, B0 is a magnetic field constant and C0 a constant with units Tesla/m.
Averaging the polarizations allows us to write

E = E(0) + E(1) + E(2) + E(3) =
A0c

2

−
dm(r)

dr√
m(r)

0
0

 , (35)

B = B(0) + B(1) + B(2) + B(3) =

−C0r cos θ
B0 sin θ
−B0

 . (36)

For gravitation, the E field corresponds to the gravitational field g, and the
B field corresponds to the gravitomagnetic field Ω. The E field has a radial
component only, while the B field has r, θ and φ components.

To show these fields graphically in a centrally symmetric geometry, we use
the function m(r) that we have used earlier [5]:

m(r) = 2− exp
(

log(2) exp(− r
R

)
)

(37)

with a radial range R. This function, its derivative and the field component Er
are graphed in Fig. 1 with all constants set to unity. We have m(r) → 0 for
r → 0. However, the derivative of m(r) goes to a final limit. Consequently, the
electric (or gravitational) field diverges when r approaches zero. This behavior
has already been identified in [5] as a “vacuum force” that appears by the radial
variation of m(r). Such a force does not exist in classical physics and is a
consequence of general relativity based on Cartan geometry. It is attractive and
this means that matter is pulled into the center as soon as it comes into the
region where m(r) deviates from unity. In a sense, this may be interpreted as
the ECE version of “black holes” that are otherwise derived from Einsteinian
general relativity in a mathematically incorrect way.

Another interesting result is that a rotational magnetic (or gravitomagnetic)
field exists. This is surprising, because the tetrad, which corresponds to the
potential, has no rotational components. This field is graphed in Fig. 2, which
shows the field vectors on two spheres, whose back side is not shown in order to
not obscure visibility. The figure shows a twist in each sphere that, in principle,
represents a Torkado structure as was discussed in Example 8.15 of [5]. The
Torkado has an additional back-path at its central axis that does not appear in
our example, but may also be present in a more customized geometry.
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Figure 1: m(r), dm(r)/dr and Er(r) for the model function m(r).

Figure 2: 3D representation of B(r).
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4 Generalizations for spherical symmetry

We have been using the line element (5) of spherical symmetry, within which
the approximation

n(r) ≈ 1

m(r)
(38)

was made for the function n(r) appearing in the more basic line element (3).
Using both functions, the tetrad (18) reads

(qaµ) =


1
2

√
m(r) 0 0 0

0 1
2

√
n(r) 0 0

0 0 r
2 0

0 0 0 r sin(θ)
2

 . (39)

Evaluation by computer algebra gives the same results (31-34) for the force
fields. Only the curvature and torsion parameters are affected. This means that
Eq. (37) is not an approximation but an exact simplification of the line element.
Another modification was to avoid the time dependence of the m function by
rolling it over to the time coordinate. If we allow explicit time dependences
in the form of m(r, t) and n(r, t), we obtain the original E field E(0) plus an
additional field E(1):

E(0) =
A0c

2

−
dm(r,t)

dr√
m(r,t)

0
0

 , E(1) =
A0c

2

−
dn(r,t)

dt√
n(r,t)

0
0

 . (40)

The result for E(0) is not changed, but E(1) contains the time derivative of n(r)
instead of the radial derivative of m(r). In the case of

n(r, t) =
1

m(r, t)
, (41)

we obtain for the second E field polarization:

E(1) =
A0c

2

−
dm(r,t)

dt

(m(r,t)3/2

0
0

 . (42)

If only m depends on time but not n, the original result of Eqs. (31, 32)
follows. We conclude that only a time dependence of the form n(r, t) leads to
an additional E field.

We can experiment further by introducing non-diagonal terms in the tetrad.
We have found that filling the first row or first column by elements different
from zero is a very critical choice, because the equation system for solving
the Christoffel symbols Γ then gives no solutions, in many cases. This means
that couplings between time and space cannot be chosen arbitrarily and require
close attention. Obviously, there are also physical restrictions to realizing such
couplings.

In summary, we have found a strong vacuum force in spherical symmetry.
An additional rotational structure appears as a magnetic or gravitomagnetic
field, and the approximations in Einstein’s theory with respect to the functions
m(r) and n(r) are justified.
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