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ABSTRACT 

The conditions under which low energy nuclear reaction occurs can be 

optimized by a straightforward application of the Schroedinger equation with a realistic 

model of the internuclear potential. Starting from the ECE wave equation, the effect of 

spacetime absorption can be considered. The conditions for low energy reaction are defined 

as total energy E of the incoming atom much less than the potential energy V of interaction. 

Quantum tunnelling is optimized when the transmission coefficient Tis maximized. For a 

Coulomb barrier it is demonstrated that Tis maximized for E<< V when the mass of the 

incoming atom is maximized. A more realistic potential is considered, made up of a 

combination of Coulomb repulsion force between nuclear protons of two different atoms, and 

a strong nuclear attraction force. 
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1 INTRODUCTION 

In recent papers of this series of 229 papers to date { 1 - 1 0} the theory of low 

energy nuclear reaction (LENR) has been considered in detail. In this paper the optimal 

conditions for LENR are defined using a straightforward procedure based on the 

Schroedinger equation with a realistic model potential. The optimal conditions for LENR are 

defined by maximum T for E << V, where Tis the transmission coefficient of quantum 

tunnelling, E is the total energy and V the potential energy of the Schroedinger equation, the 

non relativistic quantum limit of the ECE wave equation { 1 - 10}. In addition, the effect of 

wave absorption is considered on the LENR process. In some working devices { 11} a phonon 

wave is applied to the reaction. In ECE theory this is a wave of spacetime within a 

proportionality factor, and ECE theory also considers the absorption of momentum. It has 

been shown in previous papers ofthis series (notably UFT 158 ff. on www.aias .us) that 

conventional Compton scattering, absorption and Raman scattering theory collapses without 

correct consideration of momentum transfer. 

In Section 2 a realistic model potential is defined which consists of Coulombic 

repulsion { 12} between the protons of the nuclei of two interacting atoms 1 and 2, and strong 

nuclear attraction { 13 , 14} with the Woods Saxon mean field model. As atom 1 approaches 

atom 2 it first meets the Coulomb barrier. It is shown in Section 3, using computer algebra, 

that it can quantum tunnel effectively through this barrier when E << V. The coefficient Tis 

maximized when the mass of the incoming atom is maximized. The Coulomb repulsion 

inside the fused entity defined in Section 2 is modelled as in conventional theory of nuclear 

fusion as the Coulombic repulsion inside a sphere. In the fused entity there is also a strong 

nuclear attraction between nucleons, both protons and neutrons. This is modelled with the 

well known Woods Saxon mean field potential. The complete potential is the sum of the 



Coulombic repulsion between protons and the strong attraction b~tween protons and 

neutrons. As atom 1 approaches atom 2, the complete potential goes through a positive 

maximum before decreasing to a negative minimum in the fused entity made up of atoms 1 

and 2 combined. The entity decomposes almost immediately to give the products of the 

fusion reaction. 

In order for low energy nuclear reaction to occur at low total energy E, the fused 

entity must be formed by quantum tunnelling of atom J into atom 2. The well known WKB 

approximation {12} used in the previous paper UFT228 ofthis series (www.aias.us) is 

extended to the complete potential and the transmission coefficient of quantum tunnelling 

evaluated numerically in Section 3. The effect of absorption is developed in Section 2 from 

the ECE wave equation {1 - 10}, which is a well known and generally covariant 

generalization to unified field theory of the Schroedinger equation. 

2. ABSORPTION AND QUANTUM TUNNELLING IN LENR. 

Consider the ECE wave equation: 

which can be expanded as: 
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where m is the particle mass, c the speed of light and{ the reduced Planck constant. Eq. 
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In the non relativistic approximation: 
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Eq. ( \ J. ) is the free particle Schroedinger equation, usually written as: 

-?- t = - r_ Q Jt - l: t -( ~~) 
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i.e. the total energy, written E in the Schroedinger equation, is the total relativistic energy of 

the free particle minus its rest energy: 

where T is the relativistic kinetic energy of the free particle. The free particle Schroedinger 

equation may be written therefore as: 
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where the mass is: 
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If the de Broglie Einstein postulates are assumed then: J 
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is the Lorentz factor. Here ;:_is the velocity of the free particle, v.> is its angular frequency 

and ~ its wavenumber. -



The process of absorption of spacetime energy and momentum can be described as 
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so the effective mass of the particle increases. The same conclusion holds for the reduced 

mass of two interacting masses, m \ and 

In the presence of a potential energy V the free particle Schroedinger equation 

becomes: 

--
I.e. : 

In the well known { 12} WKB approximation the transmission coefficient for quantum 

tunnelling from Eq. ( -;G ) is {12}: 

T 

where: 

where the integral is evaluated between two points on the potential. In general, this quantum 

tunnelling process may be accompanied by quantum absorption described as follows: 



In conventional nuclear fusion theory the potential in one dimension is: 

+ 'Jc -(1~ 

which is the sum of Coulombic repulsion and strong nuclear attraction. This potential is 

sketched in Fig. 1 

where there are Z \ protons in atom 1 and Z "';l protons in atom 2. The region r less than R 

defines the interior of the fused entity of radius R. Therefore the interior is modelled as a 

charged sphere of radius R. Outside the fused entity in the region defined by r greater than R 

the usual Coulomb law is used conventionally. On the ECE level { 1 - 1 0} the Coulomb law is 

changed. 

The potential due to the strong nuclear force between protons and neutrons is 



modelled conventionally in the mean field approximation by the W.oods Saxon potential: 
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The minus sign means that the strong force is a force of attraction between both protons and 

neutrons, i.e. between all nucleons, either in the separate nuclei 1 or 2, or in the fused 

nucleus. Here V 
0 

is the well depth, and a is the surface thickness of the nucleus. 

"' Therefore the transmission coefficient is worked out in general using the combined 

potential ( a._l ). In the region where the repulsive part dominates the potential reduces to: 

and as shown in Section 3 the transmission coefficient in this case can be expressed as: 
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Since a varies very slowly with Z, then: 
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for optimal transmission, the heavier the element the less the required energy. 

3. RESULTS AND DISCUSSION 

Section by Dr. Horst Eckardt and Dr. Douglas Lindstrom 
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3 Results and discussion

In this section we compute examples for the transmission coe�cient. In WKB
approximation this was given by Eqs.(24) and (25). By variable sunbstitution
of

θ2 = y, (37)

Eq.(24) can be written as

T =
16y

16y2 + 8y + 1
. (38)

This function is graphed in Fig.2. By setting

dT

dy
= 0 (39)

it is found that the maximum is at y = 1/4. This is a general result and holds
for all forms of y respectively θ de�ned by Eq.(25). The wave vector κ is de�ned
in general by

κ =

√
2µ

~
√
V (r)− E. (40)

3.1 Rectangular potential barrier

In case of a free particle we have

V (r) = V0 = const. (41)

and the energy dependence of κ is of the form

κ =

√
2µ

~
√
V0 − E, (42)
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Figure 1: Schematic represantation of potential well consisting of Woods Saxon
and Coulomb potential.

leading to a θ value of

θ = exp

(√
2µ(V0 − E)

~
(b− a)

)
(43)

according to Eq.(25), where µ represents the reduced mass and the potential
well reaches from position a to b. The corresponding transmission coe�cient
is graphed in Fig.3 for three values of µ. It can be seen that transmission is
at maximum when E reaches the potential well V0 where classical transmission
sets on. Then we have θ = 1 from Eq.(25) and the transmission coe�cient takes
the value

Tmax =
4

(2 + 1/2)2
= 0.64. (44)

Consequently all curves in Fig.4 are in a range below this value.

3.2 Coulomb potential

In the case of a Coulombic barrier we have according to Eq.(28):

VC =
Z1Z2e

2

4πε0 r
. (45)

At the point r = b it is

E =
Z1Z2e

2

4πε0 b
. (46)

Inserting this into κ leads to the simpli�ed expression

κ =

√
2µE

~

√
b

r
− 1 (47)
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and from (25) we obtain

θ = exp

(√
2µE

~

∫ b

0

√
b

r
− 1 dr

)
. (48)

The integral evaluates to a simple value:∫ b

0

√
b

r
− 1 dr =

πb

2
, (49)

hence:

κ =

√
2µE

~
πb

2
, (50)

θ = exp

(√
2µE

~
πb

2

)
. (51)

Because of (46), b depends on E. The full E dependence of θ is therefore

θ = exp

(
Z1 Z2 e

2

2
5
2 ε0 ~

√
µ

E

)
. (52)

The transmission coe�cient T (E) resulting from this function is shwon in Fig.4
for three mass values (other constants set to unity). It can be seen that trans-
mission raises to maximum with increasing energy, but with inverse slope as for
the constant potential well (Fig.3).

From the general result that y of Eq.(38) is at maximum for y = 1/4 we
obtain with (52):

θ2max = 1/2 (53)

or by taking the logarithm this equation:

µ

E
=

32 log (2)
2
ε20 ~2

Z2
1 Z

2
2 e

4
. (54)

For T to become maximal, µ and E must stay in a �xed ratio. For higher
ordinal numbers of the nuclei, the constant becomes smaller. Since µ gets larger
on the left hand side in this case, this means that this has to be compensated
by enlarging the energy. In other words, heavier masses require higher energies
for the optimum transmission coe�cient. From (54) the optimal energy for a
combination of two masses m1 and m2 is given by

Eopt =
Z2
1 Z

2
2 e

4 µ

32 log (2)
2
ε20 ~2

(55)

with

µ =
m1m2

m1 +m2
. (56)
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V0 = 93.89 MeV depth of potential function
ra = 1.18 · 10−15 m single charge radius in target nucleus

R = ra · (A1/3
p +A

1/3
t ) Radius of central potential function

ar = .454 · 10−15 m di�useness of the potential
At = 15.9994 atomic mass of oxygen, the target
Ap = 12.011 atomic mass of carbon, the projectile
VWS = −V0/(1 + exp[(r −R)/ar]) Woods-Saxon Potential
k = 8.99 · 109 1/(4πε)
Zt = 8 number of protons in target
Zp = 6 number of protons in projectile

Table 1: Data of Woods Saxon potential from Hamada [1].

3.3 Woods Saxon and Coulomb potential

Realistic potential wells can be modeled by assuming a Woods Saxon potential
inside the nucleus and a Coulomb potential everywhere. The latter has to be
chosen di�erently inside and outside of the nucleus, see Eqs.(27-30). Inserting
this combined potential into Eq.(25) gives no analytical solution for the inte-
gral, therefore κ must be determined by numerical integration. For the upper
integration limit, the results of the preceding section remain valid, i.e. the inte-
gration limit b is dependent on E according to Eq.(46). The same holds for the
lower integration limit a. Both can be found by solving

VWS(r) + VC(r)− E = 0 (57)

with Woods Saxon potential (30) and Coulomb potential (29). This equation
cannot be solved analytically, it has to be solvede numerically. The region of
the positive potential is graphed in Fig.5 as a 3D plot where the relative axes
are de�ned by

η =
r

R
, (58)

λ =
E

V0
. (59)

The parameters of the Woods Saxon potential for the Carbon-Oxygen system
are listed in Table 1. V0 is the potential depth at the nuclear centre.

Fig.6 shows the transmission coe�cient calculated for the Carbon-Oxygen
system. It is su�ciently high to explain nuclear processes when E is in the
range of some percents of V0.
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Figure 2: Transmission coe�cient T (y).

Figure 3: Transmission coe�cient T (E) for three values of µ for a constant
potential barrier V0 = 5.
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Figure 4: Transmission coe�cient T (E) for three values of µ for a Coulomb
barrier.

Figure 5: Transmission coe�cient T (E) for three values of µ for a constant
potential barrier V0 = 5.
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Figure 6: Transmission coe�cient T (E) for three values of µ for a Coulomb
barrier.
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