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ABSTRACT 

The general theory of three dimensional orbits is developed for any potential of 

attraction between an orbiting mass m and an attracting mass M. In general any three 

dimensional orbit can be constructed from the beta conic section, and classified in terms of 

ellipticity. In Cartesian representation there are sixteen classes of orbit, representing three 

dimensional conic sections. The theory is illustrated with the three dimensional whirlpool 

galaxy, and equations are developed for the animation of three dimensional orbits. 
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1. INTRODUCTION. 

In recent papers of this series { 1 - 1 0} th~ theory of three dimensional orbits 

has been developed by replacing the plane polar coordinates with spherical polar coordinate's 

in the kinetic energy. This procedure has resulted in a large number of novel results :tn 

astronomy. In general the hamiltonian can be represented by the beta conic section, where 

beta is defined in terms of the angles + and & of the spherical polar coordinate system 

of coordinates. There are four orbital functions in general, r can be a function of beta, 

theta, phi and a three dimensional combination of theta and phi. In two dimensional orbital 

theory r is a function of only of phi. In three dimensions there is more than one conserved 

angular momentum. The total angular momentum L is conserved, and the L'L component is 

conserved. In two dimensional theory only the L'Z, component is conserved. A three 

dimensional orbit r ( f , 8 ) can always be constructed from any potential of attraction 

U( f ), so in general r is a function both of f and 8 . In two dimensional theory r is a 

function only of f . For an inverse square law of attraction between an orbiting mass m 

and a central mass M, the three dimensional orbits can be deduced from a conic section in p 
for various ellipticities. In Cartesian representation it is shown in Section 2 that there are 

sixteen classifications of three dimensional orbit in general, equivalent to the three 

dimensional conic sections. 

In Section 2 the general theory ofthree dimensional orbits is given for any 

potential of attraction U ( r ) and the theory illustrated with the hyperbolic spiral and 

logarithmic spiral orbits in three dimensions, these are examples of orbits generated with 

different types of inverse cubed force law of attraction. The inverse squared force law of 

attraction applied in three dimensions results in the .~hree dimensional beta conic section. It is 

shown that there are sixteen fundamental Cartesian representations of the beta conic section 

in polar representation. Equations are given for the animation of three dimensional orbits. 
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In Section 3 the three dimensi?nal whirlpool galaxy is graphed and discussed. 

2. GENERAL THEORY AND CLASSIFICATIONS. 

Consider the hamiltonian: 

t 

and the lagrangian: 

where U is any function ofr. The solution ofEq. ( i ) is: 
\ ~ (rJ -&) -

where f is any function of p . The force law equivalent to Eq. ( ~ 

rU) ..,_ ~ LJ (J...') ('\ 
where: ... 

-~(? ? < J 
LJ A.) (' 
~() ~f-) < 

) is: 

The transition from 2D to 3D orbital theory takes place through a transition 

in the kinetic energy: 

The potential energy remains the same in 2D an.d 3D. In 2D: 

• d .• J ~ 

...J~ -:... ( t- <(> ' 
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and in 3D: 
) 

• ) J • :l -(~ ( . +- ' ~ '-1 -

• J 
• :l + J si~) e. - ( ~ · 
B + 

f -
where: 

Eqs.(\)to( '\ )leadto{l-10}: 

L<. t~~ -(\o) ---
( o.S 6 L s~~ . 

t - 3=-. 
L 

and 

r.e. 

and 

In general, a three dimensional orbit is given by Eq. ( J ) with p defined 

by Eq. ( \d.. ). Therefore r may be expressed in terms of f , in terms of B , and as 

a combination of both by adding Eqs. ( ) }. ) and ( \3 ) to give: 



\ - \ 

\-

)forany p and any force law or potential 

The lagrangian ( 'd.. ) gives { 1 - 1 0}: 

This equation gives the t dependence of f : 
p(tj ~ t- \ode 

and ofr: 

Therefore from Eqs. ( \0 ) and ( l\ ): 



1ltJ ~ t~-' ( L'l t~rlrJ)- (d. I) . 
~ lt) ~ Cos-'((1-h))YilSi~p(t~.~(:l~ 

The three dimensional time dependence ofthe orbit is found from Eqs. ( \ \.r ), ( ) \ ) and 

( ~)). 

The three dimensional hyperbolic spiral is defined by: ~ 

\ ~ \o - (:G) 

so the time dependence of f ¥ 
in this case is: 

~ -l~0 r(tJ - - Vh_(b 

Lt 
and that of r is: 

((t) L t.- ()~ -
Yh\o 

From Eqs. ( ~~)and ( \0 ) r can be expressed in terms of r : 
' .,_ c, - ( ~') 

t~- l ( tt~+) 
and from Eqs. ( :1.) ) and ( \\ ) r can be expressed in terms of e 

In general therefore r is a three dimensional function of 

~YJ''~(·JV 
and B : 

\ 
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For an inverse square law of attraction: . 

where G is Newton's constant, the resulting three dimensional orbit is the beta conic section: 

\-\- E- (o5p 
where ri. is the half right magnitude and f the eccentricity. The dependence of p 

4f ) -L>~. 
( \ -\-- {{oS ~) 

on t is given by: 

- (~J) where the time to complete one orbit is: ~ J..) 
r( -=- cl'll L 

t -;. r-( r p q~ ~ 
~d_'i( o ( \ t f- CoS r) 1/ 

(~ \'IJt cv,__ !- - E- ( \- E_J) ) Sl~o-f-
Hf) d H E- c<>.rf 

Therefore: 

--

For small ellipticity t this can be inverted to give: 

~(t) ~ )~\ t 16 J'K c;}~~ 
) 

5 t: ") r t' ~ t \ -\- f · \3 S ~ ~ bTl-
+~~.,~ -=c) Q. -r 

t . 4. . . 

_)s<.._ dtr !_) 
- "l 

- (~4-) 



However, the usual method used is Kepler's construction { 11 }, which gives: 

where: 

t ~ ~~· ( t -E s; ~ 1) -(3 S) 
- I+ f I/;} t"""-.:i-. - (:,0 

t~~ \-f J_ 

The quantity 'd.'tf t / '""( is the mean anomaly. Having found ~ ®· Eqs. ( \ 0) and ( ll ) 
may be used to fmd r l ~ and a(~ , and lin ally Eq. ( 3 0 ) may be used to find the 

three dimensional r (t) ~ f ( theta(!), ph;)-~or ;~ circle: _ (:> t) 
. ( .,. d-_1 - U·li') 

so: 

p (t) ~ )1!~ - (l,q) 



The overall time dependence of r is found from the conservation of angular momentum: 

l 

and the time dependence of f 
The polar equations considered above are supplemented by a Cartesian analysis 

and classification as follows, a classification which allows direct comparison with results 

from solid geometry, a part of Cartan geometry upon which ECE theory is based. The 

Cartesian representations all emerge from the beta conic section: 

__sl___-- -
\ + f- (oS p 

in polar representation. This conic section is equivalent to the hamiltonian ( ) and the 

lagrangian ( d. ) with an inverse sqw are force law of attraction: 

F(0 ~ - ~00-&- I 
1) Beta Ellipse 

The Cartesian representation of the beta ellipse with an attracting mass M at 

with 

) '(; 1\ - (4-t) )(. t -
~ \o') 

<A. :l 
1)-(~-1) J ( I 7_ 

y -(~ 
~ 

\- l7, 
-

one focus of the ellipse is: 

and 
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Here: X..,_ c...( t <C<Uf 
'/ "";. < s;.__ ~ . 

7._ -,. { (OJ ~ 
where a and bare the major and minor semi axes. The ellipticity of the ellipse is: 

o ( f ~ ~ ~ - :: ( s~) 
and its half right latitude or semi latus rectum is: 

d.= v_(\-fJ). 
2) Beta Hyperbola 

In this case: 

where: 

The ellipticity is: 

and the half right latitude is: 
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3) Beta Parabola 

Here: 

and the ellipticity is unity: 

f -

4) Beta Circle 
) l'0 J )_ 

Here: 
~ -\- 'I -=--

{ 

) '/) -(t~· J. \- LL 7_ -
L 

and the ellipticity is zero: 

._) 

Using these equations a Cartesian classification can be made of three dimensional 

orbits into sixteen fundamental types as follows. 

Ellipse 

Type (1) : Ellipsoidal •) 

~) iJ j_ \ 
\- ~) + ~ - i_ -- ---t "} ') ') 

---:; ~ G 
c 

-h) (A_ 
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Type (2): One Sheet Hyperbeloidal 

-) 
Q_ 

Type (3): Elliptic Parabaloidal )() ,/'J __ + 
C\.. ") - \o J 

Type ( 4): Elliptic Parabaloidal 

~J 
1 + i - 1£_ ----_) 

Hyperbola 

Type (5): One Sheet Hyperbeloidal 

Type (6): Two Sheet Hyperbeloidal 

\:,") c 

\ --J 
c 

-

\- f -G 

J + [_ - \ -

Type (7): Hyperbolic Parabaloidal 

"f.....J. - f ") -\- 7_ - \- ( \ -~ 'I 

--- - - -
\:,J G 

G-
'") 

£A._ 

-h) 
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Type (8): Hyperbolic Parabaloidal 

'f...J _j) t 7_ --) ~J 
c 

0... 

Parabola 

Type (9): Elliptic Parabaloidal 

YJ \- L-r 
J 4-X - h<t) 

1- \ -r'G --- -
J \;) - -- --

().. 
l '.oJ CA. 

Type (10): Hyperbolic Parabaloidal 

YJ (:• 
J _(~~ 

-r-L \- ~) 
_7_ - 4-~ 

\oJ 
----=) ---\, CA. 

Type (11 ): Parabaloid 'I) -t 
7_ ~'>( \ \- L-z '/ 

- --- _(, .....----- \, 
~ 

"') ~ 
CA. 

Type (12): Parabaloid 

'I) 6 ~~ -\-
\ \-l-z. '/ _(yv 
-

- - ~ -- L 

";) \, 
C\. 

Q_ 

Circle 

Type (13): Ellipsoidal 

y...,J+yJ \-(\-L~) 
--; J 

+ 7_ - ( 

-(v) 
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Type (14 ): One Sheet Hyperbeloidal 
) 

(' 
J 

~J lr y) \ + L-z. -~ < 

-(~) 
Type ( 15): Ellipsoidal Parabolic ) 

- ~~ \-L~ -{' YJto..G "1-,J-\ - \ -

Type (16): Ellipsoidal Parabolic 

Types (1) to ( 4) are given by the beta ellipse with eccentricity: 

0 ( ~ (_ \, 

Types (5) to (8) are given by the beta hyperbola with eccentricity: 

f 't \. 
Types (9) to (12) are given by the beta parabola with eccentricity: 

1_. 

Types (13) to (16) are given by the beta circle with eccentricity: 

0 

3. GRAPHICAL ANALYSIS 

Section by Dr. Horst Eckardt 



General theory and classi�cation of three

dimensional orbits

M. W. Evans∗, H. Eckardt†

Civil List, A.I.A.S. and UPITEC

(www.webarchive.org.uk, www.aias.us,
www.atomicprecision.com, www.upitec.org)

3 Graphical analysis

The time evolution of the orbits in space has been graphed for hyperbolic and
exponential spirals. These are planar orbits described by Eqs.(17),(44). The
time evolutions are described by Eqs.(19-22) and (39-42) respectively.

The orbit of the hyperbolic spiral (Fig. 1) is always in a plane. Only the
plane changes its direction with L. For L = LZ it is in the XY plane, for LZ = 0
it is in the XZ plane, because then the angular momentum vector has no Z
component. Time evolution does not change with LZ because β only depends
on L, not on LZ . The circles depicting the orbit in Fig. 1 are generated on
an equidistant time mesh, their distance is a mapping of the time evolution of
a particle in the orbit. The azimutal angle θ oscillates strongly in time (see
Fig. 2) because the orbital plane is rotated against the XY plane. The orbit
is indeed in a plane as can be seen when the viewing angle of Fig. 1 is rotated
(not shown in a Figure).

The time evolution of the exponential spiral (Fig. 3) orbit has been graphed
in the same way as for the hyperbolic spiral. The spiral behaves more smoothly
near to the centre because of the di�erent radial dependence. Also here it can
be seen that the time evolution is more rapid near to the centre.

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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Figure 1: Hyperbolic spiral orbit for L = 3, LZ = 1.

Figure 2: Angular time dependence θ(t).

2



Figure 3: Exponential spiral orbit for L = 3, LZ = 1.
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