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ABSTRACT 

It is shown straightforwardly that boundary conditions at the interface for 

reflection and refraction do not imply that the frequencies of the incident, reflected and 

refracted beam are equal, and do not lead to Snell's laws. The correct description of all 

effects associated with reflection and refraction must always be based on conservation of 

energy and momentum. In general the three frequencies are different, as observed by Evans 

and Morris. In this paper, three particular cases are considered: reflection and refraction form 

an absorber, Brewster angle refraction, and total internal reflection. 

Keywords: ECE theory, Evans Morris effects, reflection and refraction from an absorber, 

Brewster refraction, total internal reflection. 
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1. INTRODUCTION 

In recent papers of this series of two hundred and eighty papers to date 

developing the ECE theory { 1 - 1 0}, a new theory of reflection and refraction has been 

proposed based on the conservation of energy and momentum. A theory has been developed 

based on one incident photon, and also a theory that considers a monochromatic beam made 

up of a Planck oscillator. The mean energy of the Planck oscillator was found as usual with 

the Boltzmann distribution that leads to thermodynamic equilibrium. In Section 2 this theory 

is applied to reflection and refraction from an absorber modelled by the Debye theory, to 

Brewster angle refraction and total internal reflection. In Section 3 the theory is analysed by 

computer algebra and graphics. It is found that the correct treatment of reflection and 

refraction leads to many interesting effects, notably the frequency shifts observed by Evans 

and Morris in a series of reproducible and repeatable experiments. 

This paper should be read in conjunction with its background notes as follows. 

Note 280(1) gives the details of microwave reflection from water using the one photon theory 

and the De bye theory of absorption. Note 280(2) describes one photon theory- with the 

memory function theory and one photon theory. Note 280(3) describes Brewster angle 

refraction and deduces the photon mass implied by ECE theory. Note 280(4) develops the 

theory of total internal reflection with the one photon theory and Planck oscillator theory. 

Note 280(5) corrects and develops Note 280(4). Note 280(6) is the theory of total internal 

reflection with the Planck oscillator theory. Note 280(7) is a summary of concepts and a 

detailed refutation ofthe standard model of reflection and refraction. Note 280(8) is a 

summary of the characteristics of the Planck oscill_ator from microwave to ultra violet 

frequencies. 
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2. REFUTATION OF THE STANDARD MODEL AND THEORETICAL 

DEVELOPMENT 

In the standard model of optics { 11} it is claimed that Snell's experimental laws 

can be derived from boundary conditions. At the boundary between two materials it is 

claimed that the phases of the incident, refracted and reflected beams are the same. These 

beams are sketched in Figure (1): 

. 
( -

\-< 

Therefore at the boundary: 

. ' -

Here CJ W \ , and CJ:). are the incident, refracted and reflected angular 

frequencies respectively at instant t, and '« , '<C \ - - , and \'\~ are the respective 

-
wave vectors at position vector r. The standard model { 11} assumes the particular solution: -

of Eq. ( ,1_ )'. This is an assumption made wi~hout experimental proof and is immediately 

refuted experimentally by the Evans I Morris frequency shifts { 1 -1 0}. It is easily refuted 

theoretically as follows. 
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The particular solution ( ~ ) implies: 

\!( • \ \< \ • { -- -

-

~ K ( i_ s;~._ 8 + ~ (dJ 8 ( 4-) 
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With reference to Fig. ( 1): 

""' 

( -tY~.-h) 
• 

and the position vector is: 

-- -
Therefore Eq. ( ~ 

The standard model forces this arbitrary theory to produce Snell's experimental law by 

assuming without mathematical proof another particular solution: 

\:c s ,~-..e -=- \'(I { ... e I "' t-c "') 5' ~..~ ~ 

in which it is assumed from Eq. ( d. ) that: 

K =-. k}. - (lo) 

This assumption is immediately refuted by the Evans I Morris frequency shifts { 1 - 1 0}. 
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Therefore: 

sl~e ·s,k.G"J {tt) 

~ - 81 - (!~) -

and it is claimed incorrectly that the theory produces what is known as Snell's first 

experimental law, the angle of incidence is equal to the angle of reflection. In fact this law 

was known in ancient times. The particular solution ( ~ ) is claimed to produce Snell's 

second law, in fact discovered long before Snell: 

\{ 51"-B ""' \'(\ ~ i h. 8 I 

with arbitrary assumption: 

~\ ~' 
1/'J. ( ) • 

vc\ Y\\ - - l4--- -
\'\. Y\ rt-

However, the assumption ( "\ ) implies: - (ts) 
t< CoJG - \ "\ I {oS 81 - - \t( J (os e). 

so: 
\(\\ ( "S & J - (tb) 
---- (os e, vel 

and: 
(a! G ~ (n) '(\ ---- (GJ e \tC) 

For values of 8\ and & ) as follows: 

_(~, {~(;)_, (18) 
() 

- (!~ 
0 

1.. e). { 'l\ (). 
' I 



Eq. ( \ S ) is absurd, because the magnitude. of K, is negative if the magnitude of Kl 
is positive. This is unphysical because the physical masnitude of wave-vectors is positive 

valued. 

The correct development of the boundary condition must be based on the 

fundamental laws of conservation of energy and momentum { 1 - 1 0}: 

{c., " {' U 1 + f UJ. , - (do) 
{'<" -:. t\'(\ -1-l~ 1- ( ~~') 

- -
so the following phase law is always true, and is also true at the boundary: \ ( '\ \ 

ev\ _ \rC • ~ ., ( u 1 -\-C·'))t - ( ~' + ~:l) ·! _- ~~ 
-

So: 

k . \ --
By experiment: 

e"l - ()~) e 
and: 

$ik_ g l\, St~ 0l - ()S) - -
'Y'\. 

and in general 

-1 1 - ( ).t) (,, CJ.,, Oa_ 

and 

1 i \'(_:l - (-Jl) \'( \"(, -
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as is immediately apparent from the fundamental conservation laws ( ~ 0) and ( ~ \ ). The 

old standard model diametrically violated these conservation laws. 

The conservation laws also apply to beams made up of the Planck oscillator { .1 -

1 0}, defined by an oscillator at angular frequency CV and energy levels: 

h.-:::._0 \ -·· ~ 
) ) ) 

Note carefully that the lowest energy level of the Planck oscillator is defined by: 

1'\ "- 0 -( J.q) 
in which case the oscillator has no energy and no momentum. The usual definition of the 

photon is: 

at any temperature T. At thermodynamic equilibrium the usual definition ( 3o ) implies 

that: ({"'>" -t() ( ~ ~ ~,_ "'---t WI - (>0 

(~~ -(~~ 
~\ 

")(_ 

if it is assumed that: 

This means that the usual definition of the photon is that of a Planck oscillator with this 

energy. The Boltzmann averaged energy of the P.lanck oscillator is { 1 - 1 0-}: 



where: 

So the conservation Ia( ~:~age are (--{ W >r 't- ( t Ul\ _ ( ?>t) 

< ~'> ( ~>7 T ( wJ.) - (J~ 
and 

(t ~) o:- ({-~,) -r (t~ '>.- (~~ 

These laws mean that the thermal or Boltzmann averaged energy and momentum of the 

Planck oscillator in the incident beam are equal to their respective sums in the refracted and 

reflected beam. So total average energy and momentum are conserved. 

In the usual development of the Planck oscillator it is assumed that there is an infinite 

number of states of the oscillator: 

(~-0 
h. ':._ 0 ) \ ~ .••. ' ~ ~ c6 

J ) 

so by the Maclaurin series: 
1 \ _(~ 

~ \ +)(., + , .. -

2J - -\- )( \ -~ )(, 

"' 
provided that: < \ . (41) X 

- ' 
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_L · i . · :, ':;._ With these assumptions the thermal average of the Planck oscillator is: 

( {'w ') ~ (f;-:ji::o J x ( \ -,- (~~ 
Some values of this thermal average are given in Table 1: 

T bl 1 Th 1 A f h Pl k o ·n a e : erma verages o t e anc 

{: ((~) 1 ({"-I I~' \ I\-\~ ~ I (V\..._, ~ CJ I ( 
I 

\0 u '\ 
' -4- .!,<6_1$. 4l ~·ctbwttve \. 5'1 'f. to o. o s~ ~. l )' \0 

\o 

" to 
o. S3> 0 • (fb ').' \ 

3<63. 01 ~(~\,J ~.J.e 

\0 \ . 5~ )(. \0 
f<V' I·R \'l " 5·) 0. 0 ~~l 3(. \~ 

\0 \ p s~ )(. \O 
3· ~l ~ \(( 

l~ 0. ~b \ t-ov -\) S3 
\0 \. sq)(. \0 

o.ol rt\LJ.. IR 
\4 u SJ>o ~. bt 

\.St\)<.lO -I~ rt< to 
\S tt.,. S.1()V )'. \ 4-. ~ ~Ill 

\ . SC\)' lo \0 I \\.V 
~ s:s on> ~~o ·I ~ 0 

\t L SC\.x. \O \O } 

_, 
At room temperature up to the far infra red at about 1 0 c yo,... , the thermal average is much 

larger than 'tCJ , indicating that m~ny energy levels are occupied at this frequency. 

_, 
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The assumption that the photon energy is: 

is equivalent to assuming that the entire energy ofthe Planck oscillator is given by the lowest 

state in which the energy is not zero, i.e. by: 

\ . - ( lt4-) 
_, 

At 293 K, this is the case from about 100 ('~ upwards in frequency. So in the visible range 

the conservation of energy and momentum are given by Eqs. ( ~0 ) and ( ~ \ ). In the very 

far infra red and microwave range of frequencies, many energy levels are populated at 293 K 

so the mean energy ofthe Planck oscillator is much greater than tw as shown in Table 

1. So in the microwave range the conservation of energy and momentum are given by Eqs. ( ,;l) 
( -\ 

. _and ( .))S ). These are valid up to about 10(~ , which is 300 GHz. 

Note carefully that the usual development of the theory of intensity in a 

polychromatic beam is based on the Rayleigh Jeans density of states corrected by the Planck 

distribution in the approximation ( '-t d.. ). The energy density U in joules per cubic metre of 

a polychromatic beam is given by: 

·l The intensity of the beam in watts per square metre is given by: 

T - c_ll 
3 

w 
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It is claimed that the Stefan Boltzmann law is obtained from: 

A- ' 

;l\llt:' 

These points are almost never made in textbooks of the standard model, but they 

are fundamentally important. The standard model of physics is riddled with errors and hidden 

assumptions that this series of papers has brought to light { 1 - 1 0}. 

The correct theory of reflection of microwaves from a material must therefore be 

based on Eqs. ( 1;h ) and ( 3:<6 ). As shown in Note 280(1) the relevant simultaneous 

giving the results of Section 3. The latter shows clearly that 

- (s~ 

is incorrect, and gives a plausible explanation of the experimental Evans I Morris effects. The 

refractive index in Eq. ( \.t. '\)is defined by: 



-(~ 
1 . II 

in terms of the relative permittivity f \ ( and the dielectric loss f\ ( . In the refracting . 

medium these may be roughly modelled with the De bye theory { 1 - 1 0} which is valid up to 

the high microwave ran~e bu~then fails ~ualitativel~: ( t _ E ( rP \!(I t CJ; .. /\ 
~\( -:.. \(ob l (0 ) ( ) ) 

- S\t 

f,;' " ( f{.- f:T~ w, '"l / ( \~ w? -Z) - (~ 
where r( is the De bye relaxation time, and t ( () and f(,} are the static and infinite 

frequency relative permittivities. This theory is described in detail in Note 280(1) and the 

results are discussed in Section 3. There is a rich variety of effects. 

This theory is a test of the Planck hypothesis. If the predicted effects are not 

observed then the Planck theory has failed at a fundamental level. 

At the Brewster angle of incidence in the visible range, where the Planck 

oscillator is in its ground state, then: ~ k ~- 1 

( t\ I / ~) 
1 

- (59 
- 'fl {l1 - ( s~ 

the following condition applies: 

- (5'i) 

and in one polarization there is no reflection. If it is considered that a beam is incident at the 

Brewster angle with frequency GJ , and is refracted at frequency W\ , and if it is 

assumed that there is no reflected frequency or energy, then conservation of energy demands 

that: 

(s~ 
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where the refracted energy is given by: 

through the de Broglie equation as in UFT158ff and UFT166. Here m is the photon mass of 

ECE theory, and the Lorentz factor\ :n ( \ -::
1 

1 / :l - ( b 0 
where vis the photon velocity. As inferred originally by de Broglie as in UFT166: 

"\}'( - c.') (b~) 

where v f is the phase velocity in the refracting medium. Assuming for the sake of 

argument that: 

then v may be found from the ordinary refractive index of the refracting medium, so the 

photon mass may be estimated from Eq. ( ~0 ), giving (Section 3): 

\ - ' ')- ' I l ') - ...-(1-"" ~ ~(/ - ~ w 
Y\\ 

( - ( b4-) 

in good agreement with previous estimates in the UFT series { 1 - 1 0}. 

Total internal reflection is defined by Fig (1) when the angle of refraction e \ is 
ninety degrees, so the refracted entity is directed in theXaxis. If no light is observed to be 

refracted along the X axis, or boundary between the two layers, then the theory is a simple 

one of reflection in which the conservation of eRergy and momentum is: -
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and 

In this case there is no change of frequency and energy and momentum are conserved in a 

simple way. This is what might occur for example in an optical fibre in which reflection is 

the only mechanism. If a refracted beam of light or electromagnetic radiation is observed 

experimentally to be present along the boundary between layers (or X axis) then by 

conservation of energy and momentum there are Evans I Morris shifts present. Total internal 

reflection can be developed as a single photon theory (n = 1 in the Planck oscillator) or as a 

theory using the average energy of a Planck oscillator (all states occupied, n = 0, 1, 2, ... , m). 

In both theories the wave vector propagates as in Eqs. ( 4. ) to ( ,{, ) with: 

vc, \'(\ i_ - ( bl) 
~ _ K) (i_ s;~e- i (oJB)- (b~ and 

where we have used: 

For total internal reflection to occur the refractive index of the medium of incident 

propagation (the glass of an optical fibre) must be higher than the medium in which 

refraction occurs (for example air of effective refractive index unity). If the phase velocity of 

the incident medium is v, and if the phase velocity in air is c, then the magnitudes of the 

wave-vectors are: 

G.J 
CJ\ --~ -" c 

From Snell's experimental second law: 

D -::. f\,Jl~,....e, 
"'.5 ~"' u 
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and in total internal reflection: 

(-n-) sth_e \ - 1_ -

so: 

$,h-e 
\ -(c..s) - --
h. 

As shown in detail in Note 280( 4) conservation of energy and momentum under these 

conditions and for a one photon theory demands that: 

- \ov w t-GJ:l - ol.wGJ~ 1( J J ' 

This equation is solved numerically using Maxima in Section 3 to give the reflected angular 

frequency (...>)in terms of the incident angular frequency W . Many interesting results 

are obtained in the presence of refracted electromagnetic radiation of angular frequency (j.) \ • 

Evans and Morris report light travelling along boundaries (see numerous photographs in the 

diary or blog ofwww.aias.us). However, if there is no refracted energy and momentum the 

theory is the simple one of Eqs. ( b S) and ( 'b ). 
Finally the general theory of total internal reflection is given in note 280(6) using 

the average energy of a Planck oscillator with all states occupied, n = 0, 1, ... , m. This theory 

resultsin: \_ ( ~~x) w _ (~Xl)C>j ") -hs) 
"l\ (:5-.. \J. w') ~('cJ. ~\J; -l/~ \/~ \<:>w;, -~ 

'"' l \: t-'} \\ -x,) \I )\' \ -x,) .,._} 
. (-t"u0 ::t ~ ~P :t~,) '~J.-=- .f){f ( -~) ?( _ ,exo _ ) \ ·. \ ,..--- , --::;:: 

\ ~\ ,. \'<\ '(2 l 

- (t~) 
Eq. ( l 5) is solved numerically in Section 3 and again gives many interesting results. 

--
where: 
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3 Numerical results and graphics

3.1 Refraction and re�ection with and without tempera-

ture e�ects

We �rst compile the equations used for solving ω1(θ) and ω2(θ). We used two
refraction indices n0 and n1 for the regions of κ and κ1 as indicated in Fig. 1.
Energy conservation is given by

ω0A0 = ω1A1 + ω2A2 (77)

with a linearized Boltzmann distribution based on Planck oscillator theory:

Ai =
1− yi
yi

(78)

yi = ~ωifT (79)

fT =
1

k T
. (80)

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de

Statistics Type Refr. index Eq. Fig. frequency shift
1-photon refraction n1 > n0 (83) 2 yes

re�ection (86) 3 no
Planck refraction (83) 4 yes

re�ection (86) 5 no
1-photon refraction n0 > n1 (83) 6 yes

re�ection (86) 7 no
Planck refraction (83) 8 yes

re�ection (86) 9 no

Table 1: Classi�cation of refraction and re�ection frequencies.
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In case of the single-photon model we can simply set Ai = 1. The equations
for momentum conservation have been chosen for refraction and re�ection dif-
ferently.

Refraction:

κ1 = κ− κ2, (81)

κ21 = κ2 + κ22 − 2κ κ2 cos(π − 2θ), (82)

n21 ω
2
1 A

2
1 = n20 ω

2
0 A

2
0 + n20 ω

2
2 A

2
2 + 2n20 ω0 ω2, A0A2 cos (2 θ) (83)

with cos(π − 2θ) = − cos(2θ).

Re�ection:

κ2 = κ− κ1, (84)

κ22 = κ2 + κ21 − 2κ κ1 cos(θ3), (85)

n20 ω
2
2 A

2
2 = n20 ω

2
0 A

2
0 + n21 ω

2
1 A

2
1 − 2n0 n1 ω0 ω1A0A1 cos (θ3) (86)

where

θ3 = θ1 − θ (87)

θ1 = arcsin

(
n0
n1

sin(θ)

)
. (88)

The results are graphed in Figs. 2-9. Two di�erences can be studied: single
photon theory vs. statistical photon theory, and normal refraction/re�ection
vs. total re�ection. So both situations of normal and total re�ection can be
handled by the same model. The results are classi�ed in Table 1. It can be seen
that a frequency shift occurs only in refraction. In all re�ection cases, there
is at least one solution with ω2 = ω0 which implies that there is no refraction
(ω1 = 0). On the other hand, if Eq.(83) is used for the re�ection process instead
of (86), then the results are non-constant and there is a frequency shift. Actually
the results for refraction and and re�ection are interchanged. This shows that
Eqs.(83) and (86) describe di�erent models of re�ection as well as refraction.
This leads to the conjecture that a single-photon theory is not su�cient to
explain all optical e�ects consistently.

The temperature e�ects lead to an inversion of the frequency shifts, compare
the �rst solution each of Fig. 2 and Fig. 4. The second solution changes from
negative to positive values, so there could be a second type of refraction in
case of photons in statistical ensembles. This has to be decided experimentally.
Similar results hold for the re�ected frequencies (Figs. 3 and 5).
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3.2 Total re�ection

In transition to total re�ection we have

θ1 =
π

2
, (89)

θ3 =
π

2
− θ (90)

with

sin(θ) =
n1
n0
. (91)

From this we then obtain

cos(θ3) = cos

(
π

2
− arcsin(

n1
n0

)

)
= sin

(
arcsin(

n1
n0

)

)
(92)

=
n1
n0
.

As can be seen from Figs. 6-9, in case of total re�ection (i.e. n0 > n1), non-
constant solutions are only de�ned in the range below the angle of total re�ection
de�ned by Eq.(91). For n0 = 1.5, n1 = 1 we obtain θ = 0.73. We can compute
how the frequency ω2 at the transition angle behaves in dependence of a variable
n0. Inserting (92) into (86) gives the result shown in Fig. 10. There are two
constant solutions, one is identical to the single photon frequency ω0, which is
consistent with Fig. 9 where no shift is visible too.

3.3 Debye theory with temperature e�ects

The Debye model of Eqs.(32-35) of UFT 278 has been recalculated with tem-
perature e�ects according to Eq.(83). Because the refraction index depends on
the refraction frequency ω1, this equation can no more be solved analytically.
A numerical method was used to calculate the dependence of ω1 on θ and the
relaxation time τ on a two dimensional grid. The resut is graphed in Fig. 11.
The frequency increases with θ as in Fig. 4 but decreases with higher relaxation
times. This re�ects the energy loss by relaxation processes.
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Figure 1: Diagram of refraction/re�ection.

Figure 2: Refracted frequency ω1, n1 > n0, single-photon model.
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Figure 3: Re�ected frequency ω2, n1 > n0, single-photon model.

Figure 4: Refracted frequency ω1, n1 > n0, multiple oscillator model.
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Figure 5: Re�ected frequency ω2, n1 > n0, multiple oscillator model.

Figure 6: Refracted frequency ω1, n0 > n1 (total re�ection), single-photon
model.
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Figure 7: Re�ected frequency ω2, n0 > n1 (total re�ection), single-photon
model.

Figure 8: Refracted frequency ω1, n0 > n1 (total re�ection), multiple oscillator
model.

7



Figure 9: Re�ected frequency ω2, n0 > n1 (total re�ection), multiple oscillator
model.

Figure 10: Re�ected frequency ω2, multiple oscillator model, dependence on
refraction index for respective angle of total re�ection.
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Figure 11: Debye model, multiple oscillator model, ω1 in dependence of θ and
relaxation time τ .

9
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