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ABSTRACT 

The principles of fluid dynamics are applied to orbital dynamics and it is shown 

that a precise and simple explanation emerges of orbital precession to experimental precision. 

These methods generalize classical dynamics and produces new fundamental velocities and 

accelerations in the plane polar coordinate system, extending the work of Corio lis in 183 5. 
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1. INTRODUCTION 

In immediately preceding papers of this s:ries { 1 - 12}, the ECE2 unification of 

fluid dynamics and gravitational theory has led to new fundamental inferences in cosmology. 

Spacetime is considered to be governed by the equations of fluid dynamics within the context 

of Cartan geometry, so the four derivative is replaced by the Cartan covariant derivative, an 

example ofwhich is the well known convective derivative of fluid dynamics. The structure of 

the field equations of fluid dynamics has been shown to be the same as that of 

electrodynamics and gravitational theory. This is an example ofthe use ofECE2 unified field 

theory. The field equations are written in a mathematical space with finite torsion and 

curvature, and are Lorentz covariant. These properties have been described as ECE2 

covarmnce. 

This paper is a synopsis of detailed calculations and computer algebra in the 

notes accompanying UFT3 ~on www.aias.us and www.upitec.org. archived on 

www.archive.org. Notes 363(1) and 363(2) give a preliminary description of precession due 

to a fluid vacuum, using well defined approximations. Note 363(3) is a preliminary 

description without approximation, resulting in a novel force equation in which the effect of 

using a convective derivative is evaluated through spin connection components. Section 2 of 

this paper is based on Notes 363(4) and 363(5), in which Eulerian first principles in fluid 

dynamics are used to give a precise description of orbital precession. Section 3 is a summary 

of computer methods which could be applied to the development of the hamiltonian and 

lagrangian. 

2. ORBITAL PRECESSION CALCULATION 

Consider the fundamentals of Eulerian fluid dynamics, in which any vector 

field F is defined as a function of position, r, and time t: -
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In the plane polar coordinate system the vector field is defined by: 

It follows as in Note 362(5) ofUFT362 that the convective derivative ofF is: -
\)f --~k 

In component notation Eq. ( 3 ) becomes: 

The second term on the right hand side of this equation is the result of the rotation of the 

coordinate·. axes of the plane polar system. The third term is a consequence of the fact that F -
is a function of r as well as t. This is the usual assumption used in fluid dynamics, and in this 

paper is applied to orbital theory to give an exact explanation of orbital precession. 

In classical dynamics: 

f -
and Eq. ( 

IfF is velocity or acceleration in Eq. ( b ) the well known Coriolis velocity and 



accelerations emerge. Therefore in classical orbital theory: 
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In Eulerian fluid dynamics the right hand side ofEq. ( l 

0 

0 0 . -h) 
0 

) is not zero 

because: 

Consider the position vector of a fluid element, denoted by: 

g_ -- g_ (£ ) k) . - c ~ 
It follows that the velocity field of the fluid is defined by: ~ C0 
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or in component format in the plane polar coordinate system: 

In plane polar coordinates: 

-
so: 



The spin connection matrix needed to define the velocity field is therefore: 
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The velocity field components are therefore: 
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and the lagrangian is: 

where U is the potential energy. 

It is known that solar system precession is a very tiny effect, so: 

SL ', I cv .rt I 0 ). (,L._ 1... - ( "l) 
but in other systems such as spiral galaxies the spin connection components may change the 



orbit from the inverse square law to the observed inverse cube law of spiral galaxies. In 

classical dynamics: \) ( ·~ . \ (~'J (~ • \[) (' / tJ -( ~y 
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so the Corio lis velocity in plane polar coordinate sis given by the convective derivative of the 

which gives the Coriolis velocity: • 
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The Euler Lagrange equations of the system are: 
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o a come sectiOn orbit is well kn In comparison, the force law f . . own to be: 
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From Eq. ( > S): 

so the angular momentum is conserved. 

In the approximation ( 3>3 ) the force law ( 3\ ) becomes: ( 0 
( 
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Using the Binet variable { 1 - 12}: 

it follows that: 
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From Eqs. ( 

so the following generalized Binet equation is obtained: 

( \ -t Q. I o0 ") d_) (_L \ -\- l_ -;. 
JJ3 ~ '(' ) '(" 

_ ~~).rlt').-C\t~ 
L 

Eq. ( ~"l ) can be applied to orbital theory and to fluid dynamics in the approximation 

( 3>3 ) and reduces to the well known Binet equation of orbital theory in the limit: 

For example, if the orbit is a conic section: 
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where ~ is the half right latitude and E is the eccentricity, it follows that: 
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From Newtonian orbital theory {1- 12} it is well known that: 

where M is the mass of the gravitating object and G is Newton's constant, so: 
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which is the inverse square law, QED. 
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using the Binet equation: 

So: 

and: 



To contemporary experimental precision: 
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where c is the vacuum speed of light. Therefore: 
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Orbital precession is due to the effect of the fluid dynamic function ~fl~ ~\,which can be 

thought of as the rate of displacement of a position element of a fluid dynamic spacetime, 

aether or vacuum. This spin connection makes the orbit precess. The conic section orbit used 

in the generalized Binet equation ( 4--;). ) is exactly equivalent to the use of the precessing 

orbit ( S.S ) in the usual Binet equation ( S( ). In both cases the law of attraction is a 

combination of inverse square and inverse cube in r. This is not the Einstein result, which is 

inverse square plus inverse fourth power in r. The Einstein theory does not in fact give a 

precessing orbit, as shown in previous UFT papers. 

3. GRAPHICS OF PRECESSION AND THE NEW FORCE LAW. 

(Section by Dr. Horst Eckardt) 
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3 Graphics of precession and new force law

We compute the acceleration a = F/m in the Newtonian limit (elliptic orbit).
As described in section 2, then we have:

r =
α

1 + ε cos(θ)
, (62)

dr

dθ
=
εr2

α
sin(θ), (63)

ω = θ̇ =
L

mr2
. (64)

In general the acceleration has a radial and an angular component which in the
case of a �uid dynamics spacetime is expressed by

a =

(
−MG

r2
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L

mr2
dr
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L

mr

)
er (65)

+

(
Ω2

01

L

mr2
dr

dθ
+ Ω2

02

L

mr

)
eθ

(see note 363(3)). We present graphical examples for the acceleration compo-
nents. By using Eqs. (62 and 63), the components of (65) can be expressed
either as a function of r or a function of θ. We present both possibilities in Figs.
1 and 2, blue and green lines. The Newtonian form can be obtained by setting
all spin connection components to zero in Eq. (65). According to Newtonian
theory, there is no angular component of acceleration as can be seen from from
both �gures.

For the second case, we use the full form (65) for acceleration with choice of

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de

1



spin connections:

Ω1
01 = 0.2, (66)

Ω1
02 = −0.2, (67)

Ω2
01 = 0.2, (68)

Ω2
02 = −0.2. (69)

In this non-Newtonian case, both acceleration components are di�erent from
zero, denoted by �P� in Figs. 1 and 2 (red and purple lines). These components
(Fig. 1) are now de�ned only in the range of the elliptic orbit and a bit more
negative than in the Newtonian case denote by �N�. The angular component
varies with angle θ as can seen from Fig. 2. The acceleration components are
periodic in 2π as required.

So far we have assumed an elliptic orbit even for the non-Newtonian case.
Actually it is a precessing ellipse as can be seen from the solution of the Lagrange
equations obtained from the Lagrangian (34). We have assumed that only Ω1

01

is signi�cantly di�erent from zero. Then we obtain the equations of motion

θ̈ = −2ṙ θ̇

r
, (70)

r̈ =
r3 θ̇2 −GM

(Ω1
01 + 1)

2
r2
, (71)

which di�er from the Newtonian form by the spin connection in the denominator
of the second equation. These equations have been solved numerically by using
initial conditions of bound orbits. This gives the trajectories θ(t) and r(t) as
graphed in Fig. 3. The three-dimensional orbit plot shows that the orbit is
not closed but a precessing ellipse in the plane Z = 0. Obviously the existence
of one �uid dynamic spin connection term su�ces to result in non-Newtonian
orbits. Alternatively, such precessing ellipses were obtained in UFT paper 328
by relativistic e�ects.
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Figure 1: Acceleration components (Newtonian N and non-Newtonian P) in
dependence of r.

Figure 2: Acceleration components (Newtonian N and non-Newtonian P) in
dependence of θ.
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Figure 3: Trajectories θ(t) and r(t).

Figure 4: Precessing elliptic orbit due to �uid dynamics e�ects.
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