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ABSTRACT 

An analytical method is developed to show that the hamiltonian of ECE2 relativity 

produces a differential orbital function whose difference from the non relativistic theory can 

be calculated directly. The differential function can be compared directly with experimental 

data. By a comparison ofUFT363 and UFT372 it is shown that the methods of fluid 

dynamics also produce a precessing orbit. 
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1. INTRODUCTION 

In the immediately preceding paper of this series { 1 - 12} (UFT3 72), a 

numerical method was used to solve the lagrangian of ECE2 relativity to give a precessing 

orbit. This important result shows that the incorrect Einsteinian general relativity (EGR) is 

also redundant by Ockham's Razor, in that a simpler theory can produce precession. The 

result ofUFT371 also confirms the method used in UFT328, simultaneous numerical solution 

of the lagrangian and hamiltonian. The theory of ECE2 fluid dynamics also produces a 

precessing orbit as shown in this paper by comparison with UFT372. The main result of 

Section 2 is a differential orbital function which can be calculated analytically from ECE2 

relativity and compared with the same function from the non relativistic theory of planar 

orbits. The differential function can also be observed experimentally. The difference is known 

from UFT3 72 to be due to a precessing orbit, which can therefore be calculated analytically. 

This paper is a synopsis of extensive calculations in the notes accompanying 

UFT373 on \Vv.rw.aias.us. Note 373(1) is a comparison ofthe orbital precession produced by 

ECE2 fluid dynamics (UFT363) and the ECE2 lagrangian (UFT372). It is impmtant and 

significant that both theories produce precession of a planar orbit. Notes 373(2) to 373(5) are 

preparatory attempts at an analytical solution. Note 373(6) calculates an orbital differential 

function by simultaneous solution ofthe relativistic and non relativistic hamiltonians, and 

Note 373(7) calculates the same differential function from experimental data at the 

perihelion, so a comparison with theory and experiment is possible. 

2. ANALYTICAL CALCULATION OF PRECESSION: 

Consider the non relativistic orbital hamiltonian: 
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of an object of mass m orbiting a mass M with orbital velocity v . The gravitational potential -
energy is well known to be: 

where G is Newton's constant and r the distance between m and M. The relativistic 

hamiltonian of ECE2 theory is { 1 - 12}: 
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where the :Lorentz factor is: 
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The velocity appearing in the Lorentz factor is { 1 - 12}: 
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where L is the angular momentum of the system, a constant of motion defined by: 

where the angular velocity is: 
• --

in the plane polar coordinate system ( r, f ). 
Using Eqs. ( \ ) and ( .3, ) the differential orbital function £A /4 

can be calculated in terms of the constants of motion Ho -Hand L. This calculation is 



can·ied out using computer algebra in Section 3. The non relativistic hamiltonian is given by: 

where a is the semi major axis ofthe non relativistic orbit: 
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where d., is the half right latitude and f the eccentricity. The relation between the 

non relativistic L and 

In the non relativistic limit: 
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the differential orbital function reduces to: 
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The numerical lagrangian analysis of UFT3 72 shows that the function 

from Eqs. ( .1.. ) and ( 3 ) is due to orbital precession. This is a major discovery that 

makes Einsteinian general relativity obsolete. 

By astronomical observation it is claimed that the perihelion advance after 

radians is: 

f 
From the elliptical orbit ( ~ ), the orbital function is: 
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and it follows that: _([~ 
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The perihelion, or distance of closest approach of M to m is defined by: 
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because M is situated at one focus of the ellipse. Under the condition ( \l ): 
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and therefore at the perihelion: 
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for the static elliptical orbit ( \.$ ) of the non relativistic theory. 

However, by observation, the perihelion advances every orbit by: r ~ ~~ ci-~:~) (,~ 
so using this value of f in Eq. ( 14-) produces: 
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Now use: 



to find that: 
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using the small angle approximation: 

Therefore the precession of the perihelion produces the change: 
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in the differential orbital function ~ {If . Using: 
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for the mass M of the sun, and using the Earth's eccentricity: 

it is found that the experimental change in L< ( Lr is: 
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and this is produced analytically by ECE2 relativity. The change in the orbital differential 

function can be calculated as in Section 3. The e'xperimental value ( J..\ ) is found by 

adjusting the relativistic hamiltonian~ • 

Note 373(1) shows that precession can be produced from fluid dynamics 



(UFT363) and also from the lagrangian theory ofUFT372. These are important confirmations 

of both theories, because the astronomically observed orbit is a precessing orbit. From fluid 

dynamics •• - (" ~ J -~ ') -(d.._~~ 
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where n 0' is a spin connection, and from the lagrangian theory: 0 
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These two expressions can be compared as in Note 373(1). In the limit: 
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Eq. ( ;}._~ ) reduces to: 
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For small precessions as in the solar system, the experimental precession can be 

modelled by: 

( 



in the first approximation. Note carefully that Eq. ( ~ \.r ) is not the true orbit. The latter 

must be calculated numerically and analytically. In Eq. ( ~ 4- ): 
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Therefore the experimental differential orbital function is modelled to be: 
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This result can be reproduced theoretically by finding ( and + numerically as in 
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UFT372, so: 
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From the fluid gravitational theory, Eq. ( l~ ), Eq. ( ~( ) is found by adjusting the spin 

connection to the experimental result. From the lagrangian theory ( d.'\ ) is found directly 
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in terms of f by expressing r 
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The experimentally observed x is therefore given by: 

\ - \ --- A 

and an exact match obtained between experiment and theory. 

As shown in Note 373(1), the kinetic energy used in the non relativistic UFT363 is: 
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so the differential function found by comparing Eqs. ( 1._ ) and ( 3 ) can be expressed 

in terms of the spin com1ection. This is carried out with computer algebra in Section 3. 

In conclusion, the lagrangian and relevant Euler Lagrange equations of ECE2 

relativity produce a precessing orbit, and the hamiltonian analysis of this Section develops 

and confirms the result ofUFT372. 

3. COMPUTER ALGEBRA AND GRAPHICAL RESULTS 
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3 Computer algebra and graphical results

We present some methods of showing the relativistic shifts of the orbital el-
lipse. First we want to get an impression on the Newtonian orbit r(φ) and
the orbital derivatives dr/dφ and (dr/dφ)2, see Fig. 1. r(φ) oscillates between
perihelion and aphelion, both derivative functions have zeros at these positions.
A precession means shift of theses zero crossings. For the subsequent calcula-
tions we have to express the major axis a, the angular momentum L and the
non-relativistic Hamiltonian H in terms of orbital parameters:

a =
α

1− ε2
, (45)

L = m
√
αMG, (46)

H = −mMG

2a
. (47)

In note 373(5) The function (dr/dφ)
2
was separated from the Hamiltonian of

Newtonian and relativistic theory. Computer algebra gives for this function
from Newtonian theory:(

dr

dφ

)2

N

=
α2 ε2 sin (φ)

2

(ε cos (φ) + 1)
4 , (48)

from the relativistic theory (with precessing orbit):(
dr

dφ

)2

rel

=
α2 ε2 sin (φ)

2

(ε cos (φ) + 1)
4 (49)

− 3

mc2

(
GM (ε cos (φ) + 1)

α
−
GM

(
1− ε2

)
2α

)2

.
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There is an additional term subtracted from (dr/dφ)
2
of the Newtonian orbit to

obtain the function for the precessing orbit. Both functions and their di�erence
are graphed in Fig. 2. Both functions should be positive because they are
squares but the relativistic function shows up negative values. There is a region
of imaginary values for dr/dφ near to φ = 0 and φ = 2π. This seems not to
be very satisfactory but the function for precession crosses zero at other values
than for the Newtonian orbit. In so far the e�ect of precession is visible.

Instead of computing (dr/dφ)
2
in dependence of φ, Eqs. (48-49) can be

re-arranged to obtain the dependence of radius r:(
dr

dφ

)2

N

=

(
ε2 − 1

)
r4 + 2αr3

α2
− r2, (50)

(
dr

dφ

)2

rel

=
c2

GMα

1− 1(
1

mc2 (
GMm
r − GM (1−ε2)m

2α ) + 1
)2
 r4 − r2.

(51)

Then the results of Fig. 3 are obtained. It can be seen that both the perihelion
and aphelion (represented by zero crossings) are shifted by relativistic e�ects.
The strength of these e�ects is modeled in Fig. 4 by using di�erent values of c.
It can clearly be seen that the deviation form the Newtonian orbit is increased
for smaller c, i.e. stronger relativistic e�ects.

In note 373(6) the di�erencence between the Hamiltonians (1) and (3), H0−
H, has been investigated. From the result an expression for (dr/dφ)2 can be
computed. For this, the equation has to be resolved for v2 �rst. This gives a
highly complicated equation with four solutions. Two solutions are complex,
one is v = c and the fourth is real-valued. We used the fourth solution and
inserted Eq. (5). Then a highly complicated expression for (dr/dφ)2 follows.
Unfortunately it is complex. The real and imaginary part are plotted in Fig.
5. The result depends on the choice of constant H0. With H = −3.75 and
H0 = −3.70 the real part in Fig. 5 starts to become positive at the minimum
radius of the ellipse. In so far this end behaves correctly, there is no zero crossing
of (dr/dφ)2 at the other end (r ≈ 2). The impact of H0 on the real part of the
solution is graphed in Fig. 6 for three di�erent values of H0 with H = −3.75
each. Increase of H0 leads to a shift of zero crossing to lower radii.

Alternatively we did the following: We resolved both the Newtonian and
relativistic Hamiltonian (1) and (3) separately according to v2. From H follows
the non-relativistic form, Eq. (5). Equating both solutions for v2 gives an equa-
tion for (dr/dφ)2, containing H0 as a parameter. The calculation has the bene�t
of not leading to complex-valued results (although the formula is complicated).
The result is plotted in Fig. 7. The positive part now is on the left hand side
of the zero crossing, i.e. the relativistic e�ect of the aphelion is modeled. The
radial range is shifted to higher radii by the relativistic e�ects (H0 > H) but
the result is less sensitive than in Fig. 6.
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Figure 1: r(φ), dr/dφ and (dr/dφ)2 for a Newtonian elliptic orbit.

Figure 2: Angular dependence of (dr/dφ)
2
from note 373(5).
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Figure 3: Radial dependence of (dr/dφ)
2
from note 373(5).

Figure 4: Strength of relativistic e�ects in Fig. 3, described by varying c.
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Figure 5: Real and imaginary part of (dr/dφ)
2
from note 373(6).

Figure 6: Strength of relativistic e�ects in Fig. 5, described by varying H0.
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Figure 7: (dr/dφ)
2
from equating the Newtonian and relativistic velocity terms.
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