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ABSTRACT 

The ECE2 covariant theory is developed of any mass m orbiting any mass m 

on the non relativistic and relativistic levels. The relativistic, ECE2 covariant, lagrangian 

produces precession of the orbit without the need for Einsteinian general relativity. The 

ECE2 covariant theory is applied to the orbit of the S2 star around a massive object near 

Sagittarius B, and to the Hulse Taylor (HP) binary pulsar. The Einstein theory is shown to 

fail by two orders of magnitude in the HP system and to fail qualitatively to give retrograde 

precession in the S2 system. 

Keywords: ECE2 relativity, the general two body orbit, S2 star system, Hulse Taylor binary 

pulsar. 



INTRODUCTION 

In recent papers of this series { 1 - 12}, various applications have been developed of 

ECE2 relativity, which is special relativity developed in a space with finite torsion and 

curvature. In section 2, ECE2 relativity is applied to the general orbit of any mass m around 
\ 

any mass m~, the general two body problem in gravitation. ECE2 relativity is applied to the 

orbit of the S2 star around a very massive object near Sagittarius B, and to the Hulse Taylor 

binary pulsar (HP). It is shown that the Einstein theory fails by eight orders of magnitude in 

the S2 star system, and by several orders of magnitude in the HP system. The ECE2 theory 

produces reasonable results. 

This paper is a short synopsis of detailed calculations in notes accompanying 

UFT375 on combined sites (www.aias.us and www.upitec.org). Notes 375(1) and 375(2) 

discuss the equivalence of the Cartesian and plane polar coordinate systems in an ellipse. 

Note 375(3) discusses the relativistic lagrangian in Cartesian coordinates and is developed in 

Section 3 to show that the relativistic angular momentum is a constant of motion. Note 374(4) 

adds a term to the potential to produce a shrinking orbit as observed experimentally in HP. 

Notes 375(5) and 375(8) are first attempts to describe the final version in Note 375(10) ofthe 

lagrangian ofthe general two body problem. Note 375(10) is the basis of Section 2 ofthis 

paper. Note 375(6) defines the halfright latitude and eccentricity of an ellipse. Not(375(7) is a 

comparison of experimental HP data from a Stanford site and Wikipedia. There are large 

discrepancies in the experimental data. This note shows that the Einstein theory is incorrect 

by several orders of magnitude. Note 375(9) gives the relevant experimental data for the S2 

star system and shows that the Einstein theory is incorrect by eight orders of magnitude. 

Section 3 summarizes computations arid graphics of ECE2 relativity applied to HP 

and the S2 star system, and to the general two body gravitational problem. 



2. ECE2 COVARIANCE IN THE GENERAL ORBIT 

Consider the orbit of a mass m \ around a.mass m ~ . The non relativistic 

lagrangian is: / 
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This equation is valid in any coordinate system in two and three dimensions and can be 

solved in Cartesian coordinates as in UFT374. 

In the solar system and S2 star system: 
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From these equations, Note 375(10) shows that there are three equations of motion in the 

general two body gravitational problem: 

•• 
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Eq. ( \ b ) gives a Newtonian ellipse wit~ mass: 

Eqs. ( \\ ) and ( 

which must be solved numerically for any coordinate system, for example the Cartesian 

system of Section 3. 

The ECE2 covariant lagrangian in its relativistic form is: t / 
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Using Eqs. ( \3> ), ( \~)and ( ,_s-), Eq. ( l_') ) reduces to: 
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which can be solved with the Euler Lagrange equation ( b ) to give a precessing orbit 

entirely without use ofthe Einsteinian general relativity (EGR) { 1 - 12}. 

Some astronomical data for the HP system are summarized in Note 375(7) from 

Wikipedia and a Stanford University site www.large.stanford.edu/courses/2007/ph21 0/ 

There is severe self inconsistency of data as summarized in Note 3 75(7)._ EGR gives the well 

known result: 



known result: 

for the precession of the orbit of the pulsar. Eq. ( )'-1-) is derived in the weak gravitational 

limit ofEGR as is well known. HereM is the mass ofthe attracting object. G is Newton's 

constant, c is the speed of light, a is the semimajor axis. and f is the eccentricity. Using 

the Stanford data it gives: 

~~ --

0 
in degrees per earth year. The experimental result form both sites is about 4.2 per earth 

year. So EGR is wildly incorrect for weak gravitation, and the two sites give wildly 

inconsistent results. 

It is unlikely that a small metric adjustment for strong field gravitation can ever give 

a precise match to experimental data as so often claimed uncritically by protagonists ofEGR. 

In order to apply ECE2 gravitational theory the following data are used, taken from 

two sites in the literature: Jo~ c~~'J in, - ~ - ~ .~)~ ~ \o - -
f J·~ (:)_~ 

"""J.. "'::... ~ (. - ~.~o~ x. \o 

The perisastron is taken to be 1.1 solar radii, a value easily found by Google. This is 
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in the required S. I. Units. The orbital velocity with respect to the centre of mass ofthe two 
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neutron stars of the HP system is used as in the literature: 
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Therefore ((?)and...,{ & )can be used as initial conditions for the computations of Section 

3. However, there is such wild inconsistency in the astronomical data that the initial velocity 

can be used as an input parameter, and the effect on the computed orbits graphed. 
SJ.. 

As in Note 375(9) Eq. ( )~)can be applied with the followin~data, easily found 

by Google and various sites: 
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All these data are given in the obscure, nonS. I., units used in astronomy, and are given 

above in the required S. I. Units. EGR and Eq. ( J..~) give: 
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This is converted to degrees per orbital interval T of S2, (i.e. per orbit) using: 
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The result is: 

--

The vague experimental claims vary from about -1 to ~ degrees per orbit. It is known that 

the orbit of S2 is nearly a Newtonian ellipse. The semimajor axis of this ellipse is: 
\\.t., 

_ \. ~)_ S3> ~ lo ~ - (>t;) 

So the S2 star is about a thousand times more distant from the central mass than the distance 

of the earth from the sun. The ratio of the mass of S2 to the central mass is roughly similar to 

the ratio of the mass of the earth to the sun. 

So it is expected therefore that the weak gravitational limit is an excellent 

approximation for S2. Nevertheless EGR fails by an order of magnitude if the precession is 

taken to be 2 ° per orbit, and fails qualitatively if the precession is taken to be -1° per orbit. 

ECE2 has been shown { 1 - 12} in many papers to be an acceptable theory of gravitation. In 

three hundred and seventy five UFT papers and books to date{1- 12} it has been shown that 

EGR is riddled with errors, notably the neglect of torsion. The S2 data show clearly that it 

fails completely in that system. It also fails completely in whirlpool galaxies for which ECE 

gives an acceptable description. 

SECTION 3: COMPUTATION AND GRAPHICS 
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3 Computation and graphics

3.1 Relativistic motion of star S2

3.1.1 The relativistic Lagrangian model

The star S2 orbits the centre of the our galaxy being a supermassive object
of over 4.3 million solar masses. S2 is one of several stars orbiting the centre
in few years, therefore their orbits are observable completely. Nevertheless,
experimental data, given in Eqs. (31) of section 2, are not very precise.

The numerical calculation was executed with the relativistic 1-body equation

r̈ =
γM G

r3

(
ṙ (ṙ · r)

c2
− r

)
(36)

as obtained from the relativistic Lagrangian

L = −mc
2

γ
+
mM G

r
(37)

where γ is the relativistic factor

γ =
1√

1− v2

c2

=
1√

1− Ẋ2+Ẏ 2

c2

. (38)

Calculations were carried out in Cartesian coordinates and in SI units. Although
distances have magnitudes of several powers of 10, this is by far the clearest way
to avoid obscure units used in astronomy. The minimum and maximum orbital
radius (periastron and apastron) are derived from the experimental semi major
axis a by

rmin =
a(1− ε2)

1 + ε
, (39)

rmax =
a(1− ε2)

1− ε
. (40)
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v0 [106 m/s] T [yr] rmax [1014 m] ε ∆φ [rad]
7.73 13.45 2.52019 0.87595 5.9385·10−4

7.7466 14.88 2.70718 0.88402 5.9130·10−4

7.7529648 15.50 2.78609 0.88712 5.9033·10−4

7.77 17.38 3.02068 0.89543 5.8774·10−4

non-rel.:
7.7529648 15.31 2.76156 0.88619 < 8 · 10−8

rel. fluid dyn. model:
7.7529648 15.52 2.78821 0.88804 -0.0043065
experiment:
7.7529648 15.56 2.68398 0.8831 -0.017. . .+0.035

Table 1: Parameters of S2 star orbit (various calculations and experiment).

The experimental periastron has been taken as initial point for orbital calcula-
tion. The initial velocity is in non-relativistic approximation:

v0 = Ẏ (0) =

√
M G

a
(3 + 2ε− ε2). (41)

Test runs showed that the orbit period T is sensitive to the initial velocity.
Therefore we selected four values of v0 (see Table 1) and extracted the orbit pe-
riod from the numerical solution. The third value is nearest to the experimental
value of T = 15.56 years and was chosen as reference value. It is not possible to
bring both T and the apastron rmax in coincidence with the experimental values
by the same v0.

The trajectories X(t) and Y (t) of the S2 star are graphed in Fig. 1. Because
of the high ellipticity, the orbital velocity at periastron is much higher than at
apastron and the X trajectory changes direction sharply. The same can be
observed from the graph of velocity components (Fig. 2) where both Ẋ and
Ẏ have sharp peaks at periastron. The relativistic angular momentum is in Z
direction and given by

LZ,rel = γm|r× v|Z = γm(XẎ − Y Ẋ) (42)

where m is the mass of S2 of 15 solar masses. The non-relativistic angular
momentum is Eq. (42) without the γ factor. Both are graphed in Fig. 3.
It is seen that the relativistic angular momentum is constant as it should be.
The non-relativistic counterpart is lower in regions where the orbital velocity is
high, i.e. at periastron. The absolute differences however are very small. The
γ factor is plotted separately in Fig. 4. Its maximal deviation from unity is
4/10 000, indicating that relativistic effects are small and the S2 orbit, in spite
of the large masses involved, is nearly Newtonian. Nearly the same results are
obtained from a calculation with the non-relativistic Lagrangian that are also
presented as a line in Table 1. All parameters (except orbital precession) are
very close to the relativistic calculation.

The numerical calculation only needs initial coordinates and velocity. All
orbit parameters have to be extracted from the calculation. We used a simple
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detection of changes in coordinate signs to find rmax and determined ε by

ε =

√
1− b2

a2
=

√
1− Y 2

max

((|Xmin|+ |Xmax|)/2)2
. (43)

While rmax depends visibly on the initial velocity v0 = Ẏ (0), the eccentricity
ε is not very sensitive on v0. We particularly emphasise that the orbital pre-
cession has been calculated carefully. Since the radius at apastron takes a flat
maximum, we used an interpolation procedure to obtain its exact value and the
corresponding angle. We took three points nearest to the maximum and made
a parabolic interpolation as follows:

The orbital angle is given from Cartesian coordinates by

φ = atan
Y

X
. (44)

The radius function ri(φi) at points (Xi, Yi) is interpolated by the formula

ri = c1φ
2
i + c2φi + c3 (45)

with coefficients c1, c2, c3. These can be determined by selecting three points (i
values) around the maximum, giving three equations:

ri−1 = c1φ
2
i−1 + c2φi−1 + c3, (46)

ri = c1φ
2
i + c2φi + c3, (47)

ri+1 = c1φ
2
i+1 + c2φi+1 + c3. (48)

After having found the solution for the coefficients, the angle φ at the maximum
is determined by

dr

dφ
= 2 c1φ+ c2 = 0 (49)

giving

φmax = − c2
2 c1

, (50)

and finally we obtain for the precession angle:

∆φ = φmax − π. (51)

The results for the numerical solutions are listed in Table 1. ∆φ is not very
sensitive to orbital changes and is about 0.034 degrees per orbit. This is in the
experimental range between -1 and +2 degrees per orbit. Obviously there is no
consensus among the astronomers even about the sign of precession.

A check of the numerical method of determining ∆φ is the non-relativistic
calculation. The result should be exactly zero. We obtained a value of about
four orders of magnitude smaller than for the relativistic calculation (Table 1).
This proves that our results are reliable, although the small precession value
was obtained from relatively large radius numbers. The time interval of Runge-
Kutta integration was 105 s that came out to be small enough compared to the
orbit period of 15.5 years = 4.89 · 108 s.
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3.1.2 A model with fluid dynamics effects

In an approach similar to that in UFT374, we added an external velocity of fluid
spacetime to the calculation. The kinetic energy of the relativistic Lagrangian

L = −mc
2

γ
+
mM G

r
(52)

was altered in a way that velocity terms vfX , vfY were added to the orbital

velocity components Ẋ, Ẏ . The justification of this procedure will be explained
in a future paper. The γ factor then reads

γ =
1√

1− (Ẋ−vfX(X,Y ))2+(Ẏ−vfX(X,Y ))2

c2

. (53)

This leads to highly complicated Euler-Lagrange equations that are not shown
here. For the calculation we used a fluid velocity model with a velocity rotating
around the central mass:

vf = ω0

[
Y
−X

]
(54)

where ω0 is an angular rotation velocity. With ω0 = 10−11/s a retrograde pre-
cession (negative ∆φ) is obtained, see orbit graphed in Fig. 5. The precession is
∆φ = −0.25 degrees which is within the experimental uncertainties. The direc-
tion of velocity rotation is in direction of negative precession angles, therefore
the spacetime fluid has the effect of pushing the orbiting mass in its flow direc-
tion. This effect is larger than the “natural” positive precession. This external
action violates energy and momentum conservation of the gravitating system,
making it an open system. The angular momentum of the orbiting mass has
been graphed in Fig. 6. There is a much stronger effect than the difference be-
tween relativistic and non-relativistic calculation in Fig. 4 (notice the different
scales on the y axis).

The result of retrograde precession gives rise to the supposition that pro-
cesses in the universe are impacted by floating spacetime, they are not fully
explainable if such effects are neglected or excluded a priori.

The rotating vector field vf is a model for a rotating rigid “spacetime
disk” around the central mass. This is a non-relativistic approach, but we
checked the disk’s tangential velocity at the apastron of the S2 star. With
ω0 = 10−11/s, X = rmax we obtain vf = 2.68 · 103 m/s which is far below the
speed of light. The rotational angular velocity period is

T =
2π

ω0
= 19 900 yr. (55)

It may be that this is the rotation speed of the central mass, generating this
spacetime velocity effect. A more conclusive calculation would have to respect
the propagation speed of light (for example Lense-Thirring effect). In the ex-
tremal case

ṙ = vf (56)

the kinetic energy goes to zero, we have a body at rest according to Newtonian
theory. This means that spacetime flow can be considered as an absolute frame
of reference.
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3.2 Relativistic 2-body solution for the Hulse-Taylor pul-
sar

The Hulse-Taylor double-star system consists of a pulsar and a neutron star of
nearly equal mass. Experimental values from Stanford are listed in Table 2, as
well as some derived quantities like apastron radius and radius factor for the
centre of mass coordinate r. The latter is required for the relativistic calculation
with the covariant Lagrangian (23). Working out the Euler-Lagrange equations
from (23) gives very complicated equations that are not shown here. Using SI
units leads to very high differences in the exponents of floating point numbers
so that the number of mantissa elements of arithmetic is exceeded. Therefore
we have to introduce reduced units to avoid this problem, similar as is done in
quantum mechanics by introducing atomic units. We choose a length unit of
10−9 m, solar masses as mass units and years as time units. Then all quantities
containing a combination of these units have to be re-scaled appropriately, see
Table 3. In particular the gravitational constant comes out to a handy value of
about 991.

The results of the calculations are displayed in Table 4. As in the S2 case,
we had to alter the periastron velocity significantly to obtain the experimental
orbit period of 7.75 hours. This overestimates the maximum (apastron) radius
and ellipticity. The experimental precession of 4.226 degrees per earth year has
been recalculated to a value per single orbit which is in the order of 10−5 rad.
This is an order of magnitude higher than the values of our calculation which are
quite insensitive to changes of v0. Perhaps additional fluid gravitation effects
have to be taken into account as obviously is the case for the S2 star. The orbits
of the Hulse-Taylor pulsar and its partner are graphed in Fig. 7. The ellipse
of the neutron star is a bit larger because masses of both stars are not totally
equal.

Since the equations of motion are very complicated, we tried a simplification
by approximating the gamma factor in the Lagrangian:

√
1− u ≈ 1− u

2
− u2

8
+ . . . (57)

with

u =
v2

c2
. (58)

The results of the quadratic approximation coincide exactly with the fully rel-
ativistic calculation, see corresponding line in Table 4. When restricting to the
linear term, the non-relativistic result (9) follows. Doing a non-realtivistic cal-
culation gives practically the same results (extra line in Table 4). This may
appear astonishing because the Hulse-Taylor pulsar is considered as a source for
gravitational waves. However, when we compare the v0 value of 450 km/s with
that of the S2 star (Table 1), we realize that v0 of the Hulse-Taylor pulsar is
smaller by an order of magnitude. This leads to a gamma factor deviating from
unity by only an order of 10−6. Therefore relativistic effects are very small in
the Hulse-Taylor system, despite of the fact that two stars comparable to the
sun come quite near to each other. The fast rotation of the pulsar of 17/s does
not play a role in this type of gravitational theory, but it may be the reason for
an energy loss which is observerd. This leads to a decrease of orbit period of
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variable alt. denom./def. quantity
a 8.6696 · 108 m
ε 0.617155
v0 450 000 m/s
mpulsar m1 2.86625 · 1030 kg
mneutron star m2 2.75812 · 1030 kg
rpulsar r1 = m2

m1+m2
r 0.4903869 r

r m1+m2

m2
r1 2.0392060 r1

rperiastron
a(1−ε2)

1+ε 3.31916 · 108 m

rapastron
a(1−ε2)

1−ε 1.40201 · 109 m

Table 2: Experimental data of Hulse-Taylor double star system (mostly Stan-
ford).

property units factor SI → adopted units
length m 10−9

mass kg 5.0287898 · 10−31

time s 1.1574074 · 10−5

velocity m/s 8.64 · 10−5

angul. mom. kg m2/s 4.3448744 · 10−44

grav. const. m3/(kg s2) G = 990.69459

Table 3: Definition of adopted units.

76.5 µs per year, corresponding to a decrease of the semi major axis by 3.5 m
per year. The loss power is reported to be 7.35 · 1024 W which corresponds to
about 8 · 107 kg/s. This is far too low to account for the orbit decrease. Since
the precession data give a hint fo fluid gravitation effects, this may also be a
reason for the orbit shrinking. Another reason could be of electromagnetic type
since the pulsar has a huge magnetic moment. Einsteinian general relativity is
no more an adequate argument because of its incorrectness.
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v0 [m/s] T [h] rmax [109 m] ε ∆φ [rad]
450 000 4.75 1.04648 0.51840 3.1966 · 10−6

466 863 7.17 1.48350 0.63433 2.9697 · 10−6

468 831 7.60 1.55474 0.64814 2.9447 · 10−6

469 526 7.76 1.58133 0.65303 2.9360 · 10−6

rel. approx. 2nd order:
469 526 7.76 1.58133 0.65303 2.9360 · 10−6

non-rel.:
469 526 7.76 1.58131 0.65303 9.7865 · 10−10

experiment:
450 000 7.75 1.40201 0.617155 6.5209 · 10−5

Table 4: Parameters of Hulse-Taylor double star system (various calculations
and experiment).

Figure 1: X and Y coordinate components of the S2 orbit (in m).
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Figure 2: Ẋ and Ẏ velocity components of the S2 orbit (in m/s).

Figure 3: Angular momentum (relativistic and non-relativistic) of the S2 orbit.
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Figure 4: γ factor of the S2 orbit.

Figure 5: Retrograde precession orbit of the S2 fluid dynamics model (in m).
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Figure 6: Angular momentum (relativistic and non-relativistic) of the S2 fluid
dynamics model.

Figure 7: Orbit of Hulse-Taylor pulsar and its neutron star partner, (in 109 m).
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