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ABSTRACT 

The relativistic orbital equations of ECE2 theory are derived and checked for self 

consistency using three methods: the kinematic, Lagrangian and Hamiltonian. Having derived 

the equations in the observer frame the de Sitter rotation method is applied to find the spin 

connection and vacuum force. The orbital equations with and without de Sitter rotation are 

solved numerically. The infinitesimal line element ofthe ECE2 theory is used to derive an 

orbit equation, and this is shown to be the trajectory of a free particle. More generally. the 

infinitesimal line element can be developed in the most general spherically symmetric 

spacetime, the m theory of previous UFT papers. 
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1. INTRODUCTION 

In immediately preceding UFT papers (~.aias.us) { 1 - 41 }frame rotation has 

been shown to result in several advances in understanding, for example frame rotation 

produces the spin connection, the vacuum force, precessing and retrograde orbits. The spin 

connection can be expressed in terms of isotropically averaged vacuum fluctuations of the 

type used in the well known Lamb shift theory. These advances go well beyond the standard 

model's Einsteinian general relativity (EGR), which cannot produce retrograde precession 

and which has recently been refuted experimentally by an order of magnitude in S star 

systems. ECE2 is able to describe S star systems to any degree of accuracy by using the 

relevant angular velocity of frame rotation. In Section 2 of this paper the ECE2 covariant 

orbital equations are derived in three ways, giving the same result. This is a triple cross check 

of the theory using kinematic, Lagrangian and Hamiltonian methods, both in the observer 

frame and rotated frame. The resulting equations of motion are solved numerically to give the 

relativistic orbit. In UFT413, the orbit was derived in a well defined classical limit. The ECE2 

covariant infinitesimal line element corresponding to the orbital equations is used to derive 

the relativistic equation of motion of a free particle. This method is checked using the 

relativistic hamiltonian of a free particle, giving the same result and a double cross check. 

Section 3 is a discussion of the numerical results accompanied by graphics. 

This paper is a brief synopsis of extensive calculations posted in the background 

notes accompanying UFT414 on www.aias.us. Note 414(1) is a summary of orbital equations 

derived in UFT413 on the classical level. Eq. 414(2) describes the hamiltonian method on the 

classical level. Eq. 414( 3) develops the relativistic hamiltonian method. Note 414( 4) is the 

basis for Section 2 and uses the fundamental kinematic and Lagrangian methods to give the 

same relativistic orbital equations, providing a cross check on all concepts and calculations. 

Note 414(5) uses the hamiltonian method to give a triple cross check of the derivation ofthe 



relativistic orbital equations, with and without frame rotation. Note 414(6) summarizes the 

relativistic orbital equations. Note 414(7) calculates the spin connection due to the transition 

-
from the classical to the relativistic theory. Note 414(8) calculates the relativistic spin 

connection due to frame rotation, and Note 414(9) calculates the relativistic trajectory of a 

free particle in two ways: using the ECE2 covariant infinitesimal line element and using the 

relativistic hamiltonian of a free particle. Both methods give precisely the same result, giving 

another double cross check. 

2. SELF CONSISTENT DERIVATIONS THE RELATIVISTIC ORBITAL EQUATIONS. 

Consider the relativistic velocity in any coordinate system { 1 - 41}: 
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where '\ is the Lorentz factor and where..:._is the position vector. The relativistic 
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in which 5S {and ~ f are the unit vectors of the plane polar system. 

It follows that the relativistic orbital equation for a mass m orbiting a mass M is: 



where G is Newton's constant. The relativistic force equation is: 

r :- ~\ .,. - ~m&-_ B:__c-. - (~) 
- - <~ 
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which can be solved numerically using the methods developed in previous UFT papers. The 

Lorentz factor in these equations is: 

in which the Newtonian velocity is: 

Eq. ( ( ) is the relativistic Leibniz equation and Eq. ( <6 ) is the conservation of 

relativistic angular momentum L: 

d.l -=-- D -td-
where 



is a constant of motion. The other constant of motion is the relativistic hamiltonian H. 

Using the frame rotation of immediately preceding UFT papers: 

Eqs. ( l ) and ( ~ ) become: 
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and the Lorentz factor becomes: 

These relativisitc orbits go well beyond the standard model's EGR. 

The orbital equations can also be derived using the ECE2 covariant Lagrangian: 

~ 
Vh0 - -Cn) 

( 

where the Lorentz factor is given by Eq. ( "\ ). Use the Lagrange variables rand f 
to find the two relevant Euler Lagrange equations: 

Jf - L~ 
Jt dr. 

and 



As shown in Note 414(4) Eq. ( \<i ) produces 

• 

which is Eq. ( \ ) Q. E. D. 

The Lagrangian and kinematic methods give the same results, giving a double 

cross check on concepts. Q.E.D. 

Eq. ( \q ) gives 

dl -=- c -
tAt 

where 
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i.e. Eq. ( \'\)gives Eq. ( ~ ), Q. E. D. This is another double cross check. It can be 

which is Eq. ( <6 ), Q. E. D. 

Eqs. ( \4- ) and ( \£ ) are obtained with the Lagrange variables r and 

)f 

and 



giving another cross check, Q.E.D. 

In Eq. ( l ) 

and 

so Eq. ( ( ) is: 
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Write Eq. ( ~<l ) as: 

where 

has been used. In Eq. ( -;}.~ ): 

so the magnitude F of the orbital force is: 
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which is the relativistic second law ofNewton. Therefore the relativistic Leibniz equation is: 
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Therefore the relativistic orbit in frame ( r, f 
f ':, h-.'{ 3 

) is given by simultaneous solution of: 
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The results are discussed in Section 3. 

A triple cross check of the orbital equations is possible using the relativistic 

hamiltonian: 
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This is a constant of motion . 'so. 

It follows as in Note 414(5) that: 
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The relativistic force magnitude is: 

so 

Using Eq. ( \..t\ ): 
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so 

which is Eq. ( ~~ ), Q. E. D. 
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With reference to Note 414(8) consider the effect of the frame rotation: 

on the relativistic orbit equations ( ~~ ) and ( ~~ ). From Eq. ( \.r l ): 
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in which the cube of the rotated Lorentz factor is: ( . ) 
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It follows as in Note 414(8) that the orbital field equations are 
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where the spin connection produced by the frame rotation ( 4-l ) is: 
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The orbit produced by Eqs. ( $;} ) and ( $3 ) is discussed in Section 3. The 

vacuum force due to frame rotation is: 

and the correctly covariant total force is: 

--
as in immediately preceding UFT papers. 

The ECE2 covariant infinitesimal line element corresponding to the orbit equations 

( '!:> l ) and ( .Y6 ) is 

where l is the proper time and '-1 tJ is the Newtonian velocity. It follows as in papers 

The Lorentz factor follows directly from Eq. ( S'\ ): 
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Therefore the infinitesimal line element immediately gives the Einstein energy equation: 
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In plane polar coordinates the infinitesimal line element ( 5q) is j 
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where E and L are respectively the relativistic total energy and relativistic angular 

momentum. Both are constants of motion. Using: 
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where a and b are constants of motion defined by: 

L -
Therefore the ECE2 covariant infinitesimal line element ( 5~ ) gives the orbit 

equation ( ~ l ) without any consideration of potential energy. It follows that the orbit 

equation ( b I ) must be given by the free particle relativistic hamiltonian: 



It follows from Eq. ( 

so 

The Newtonian velocity is: 

Using: - ~ !::L ~ f ~ ~h0 
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the Newtonian velocity can be expressed as: 
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In Newtonian dynamics the constant angular momentum is: 
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which is Eq. ( L/ ), Q. E. D. 

Therefore the infinitesimal line element ( $ '\ ) and the Einstein energy 

equation and orbit ( <t \ ) are those of a relativistic free particle. 

Eq. ( 
't \ ) can be in+ated using~ ~ ( A. 

where: 

A·.-= 

The Wolfram online integrator gives: 

r-
so it follows as in Note 414(8) that: 

~ 

L 1. 

This the relativistic trajectory of a free particle and is graphed in Section 3. In the non 

~ -{~j 



relativistic limit: • 

as in Note 414(9). 

In order to describe the relativistic orbit of m about M the infinitesimal line 

element is needed ofthe most general spherically symmetric spacetime: 'l ) ~ ') 
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where m is a function of r. In order to introduce the potential energy into the infinitesimal line 

element the infinitesimal line element ( ~1 ) must be used together with the rotating fr~e 

theory. This will be the subject ofUFT415. 

3. NUMERICAL ANALYSIS AN DISCUSSION 

Section by Dr. Horst Eckardt 
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3 Numerical analysis and discussion

3.1 Comparison with Euler-Lagrange equations in carte-
san coordinates

In earlier work we had derived the relativistic Euler-Lagrange orbital equations
in cartesian coordinates which are

r̈ =
M G

γ r3

(
ṙ (ṙ · r)

c2
− r

)
. (88)

We show that these are equivalent to those in plane polar coordinates used in
this work. For this, we transform Eq. (88) into polar coordinates, using the
transformations

X = r cos(φ), (89)

Y = r sin(φ). (90)

Then the velocity components are

vX = Ẋ = ṙ cos(φ)− rφ̇ sin(φ), (91)

vY = Ẏ = ṙ sin(φ) + rφ̇ cos(φ) (92)

and the accelerations are

aX = v̇X = r̈ cos(φ)− 2φ̇ṙ sin(φ)− φ̈r sin(φ)− φ̇2r cos(φ), (93)

aX = v̇X = r̈ sin(φ) + 2φ̇ṙ cos(φ) + φ̈r cos(φ)− φ̇2r sin(φ). (94)

The scalar product ṙ · r in (88) simplifies to

ṙ · r = vXX + vY Y = rṙ. (95)
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Inserting (91-95) into (88) then gives after some trigonometric reductions and
resolution to φ̈ and r̈:

φ̈ eX =

(
GM φ̇ ṙ

γc2 r2
− 2φ̇ ṙ

r

)
eX , (96)

r̈ eY =

(
GM ṙ2

γc2 r2
+ φ̇2r − GM

γr2

)
eY (97)

where

eX =

[
1
0

]
, eY =

[
0
1

]
(98)

are the cartesian unit vectors. Because these are the same at both sides of (96,
97), it follows directly

φ̈ =
GM φ̇ ṙ

γc2 r2
− 2φ̇ ṙ

r
, (99)

r̈ =
GM ṙ2

γc2 r2
+ φ̇2r − GM

γr2
. (100)

These equations are identical to those derived from the Lagrangian

L = −mc
2

γ
+
mMG

r
(101)

with the γ factor

γ =

(
1− ṙ2 + r2φ̇2

c2

)−1/2
, (102)

Q.E.D.
Applying frame rotation consists in the replacement

φ→ φ′ = φ+ ω1t. (103)

For relativistic motion, the relativistic γ factor (102) is to be replaced by

γ =

(
1−

ṙ2 + r2
(

d
dt (φ+ ω1t)

)2
c2

)−1/2
(104)

=

1−
ṙ2 + r2

(
φ̇+ ω1 + ω̇1t)

2
)

c2

−1/2 . (105)

Inserting this in the Lagrangian (101) and evaluating the Euler-Lagrange equa-
tions for φ and r, we obtain the equation set

φ̈ = −ω̈1t−
2ω̇1 ṙt

r
+
ω̇1GM ṙt

γc2 r2
+
ω1GM ṙ

γc2 r2
(106)

− 2ω̇1 −
2ω1 ṙ

r
+
GM φ̇ ṙ

γc2 r2
− 2φ̇ ṙ

r
,

r̈ = ω̇2
1r t

2 + 2ω̇1 φ̇rt+ 2ω1 ω̇1rt (107)

+ ω1
2r + 2ω1 φ̇r + φ̇2r +

GM ṙ2

γc2 r2
− GM

γr2
.
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These equations have to be solved simultaneously for a given function ω1. This
equation set becomes identical to (99, 100) for ω1 → 0 as required for consis-
tency.

3.2 Numerical solution without rotation

The equation set (99, 100) has been solved numerically for a demo system with
parameters near to unity. There is a forward precession of the orbit which
is graphed in Fig. 1. This is as already known from previous papers. The
relativistic angular momentum with rotation is defined by

L = γmr2
(
φ̇+ ω1 + ω̇1t

)
(108)

and comes out as a constant of motion from the Euler-Lagrange equations. It
is compared with its non-relativistic counterpart

LN = mr2
(
φ̇+ ω1 + ω̇1t

)
(109)

in Fig. 2, showing the required constancy in the relativistic case. The γ factor
is graphed in Fig. 3, indicating that we are in a significant relativistic case. The
total energy

E = mc2(γ − 1)− mMG

r
(110)

and the corresponding Newtonian expression

E =
1

2
m
(
ṙ2 + r2(φ̇+ ω1 + ω̇1t)

2
)
− mMG

r
(111)

are graphed in Fig. 4. Only at apastron positions, where the orbital velocity is
minimal, the Newtonian values are roughly equal to the relativistic values.

3.3 Numerical solution with rotation

For the solution of the frame-rotated equations (106, 107) the rotation function

ω1 = a exp(−b t) (112)

was used with a negative a and positive b parameter. Due to frame rotation,
there is a much higher precession effect in the orbit (Fig. 5). Besides this, the
orbital extension (X and Y width) is smaller as an effect of rotation. The an-
gular momenta, γ factor and total energies (Figs. 6-8) look very similar to the
case without rotation (Figs. 2-4), however the rotation period has shortened and
there is a larger distance between relativistic and non-relativistic values, indi-
cating that the higher rotation frequency increases orbital velocity and thereby
relativistic effects. The γ factor has a higher minimum, underpinning the same
result.
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Figure 1: Orbit of relativistic motion.

Figure 2: Angular momenta of relativistic orbit.
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Figure 3: γ factor of relativistic orbit.

Figure 4: Total energies of relativistic orbit.
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Figure 5: Orbit of relativistic motion with frame rotation.

Figure 6: Angular momenta of relativistic orbit with frame rotation.
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Figure 7: γ factor of relativistic orbit with frame rotation.

Figure 8: Total energies of relativistic orbit with frame rotation.
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