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ABSTRACT 

It is shown that force and potential energy are generated by the general spherical 

spacetime (denoted "m space") and under well defined conditions this energy is imparted to 

material matter. It is defined by an m ( r ) function that reduces to unity in Minkowski 

spacetime. The spin connection of ECE2 theory is shown to originate in m space, and the 

frame rotation theory ofthe spin connection is related tom ( r ). Superluminal motion is 

generated through the generalized Lorentz factor of m space. In a well defined classical limit 

the latter reduces to orbit theory that shows how m ( r ) may be measured by routine 

astronomy. 

Keywords: ECE2 theory in spherical spacetime, m theory, infinite energy and superluminal 

motion from spherical spacetime. 



1. INTRODUCTION 

In recent papers of this series { 1 - 41 } the dynamics of orbits have been 

developed in the most general spherically symmetric spacetime, denoted "m space'·. The m 

space is characterized by a well known infinitesimal line element containing the m ( r ) 

function,( denoted "m function" for short) where m is any function ofthe coordinate r ofthe 

plane polar system ( r, f ), In section 2 it is shown that m space contains force and potential 

energy which may be imparted as kinetic energy to material matter. Under well defined 

conditions the force and potential energy of m space become infinite, and the ubiquitous m 

space contains an infinite amount of potential energy which is observable precisely in 

radiative corrections such as the Lamb shift. Them space is also responsible for the spin 

connection ofECE2 theory, and its generalized Lorentz factor results in superluminal motion. 

A method is given for the astronomical observation of the m function. 

This paper is a brief synopsis of detailed calculations in the notes accompanying 

UFT417 on W\Vw.aias.us. Note 417(1) defines the force due tom space, synonymous with 

"vacuum force" or "aether force". Note 417(2) is a summary of the equations of motion ofm 

space and their Minkowski limit. Note 417(3) is a preliminary version ofNote 417(4) which 

defines the condition for the transfer of an infinite peak of potential energy from m space to 

kinetic energy in material matter. Note 417(5) defines the work integral of the force ofm 

space, or "vacuum force'', and gives an outline of how the force ofm space can account for 

the Lamb shift. Note 417(6) relates them function to the frame rotation theory ofrecent UFT 

papers, both for forward and retrograde precessions. Note 417(7) uses well known turning 

point theory in differential calculus to define the general maxima, minima_ and inflexions of 

the force due tom space. The energy due tom space is included in the hamiltonian and the 

rest energy defined in m space. The rest energy is subtracted from the hamiltonian to give the 

reduced hamiltonian. A well defined approximation is used to greatly simplify the calculation 



of the reduced hamiltonian in the classical limit and the orbital velocity calculated in m space. 

This calculation gives an expression for them function in terms of the observed orbital 

velocity at a point r in any orbit. The concepts and approximations used are shown to be 

rigorously self consistent. 

In section 3, the superluminal method is demonstrated and the theory of Section 

2 complemented by discussion and graphics. 

2. INFINITE ENERGY, SUPERLUMINAL MOTION AND ORBIT DYNAMICS 

Consider the plane polar coordinate system ( ( \ ) f ) defmed by: 

-(\) 

and introduced in immediately preceding UFT papers. In this coordinate system the 

lagrangian of m space is: 
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where the m function is defined by the infinitesimal line element and the Lorentz factor: 

~-:. (v.-U)- ~ {, · i,'y'';) -lb) 
of m space. The gravitational potential energy of attraction between m orbiting M in the 

lagrangian ( ~ ) is: 

where G is Newton's constant. The Euler Lagrange equation is: 



J! ~ ~ 'J 1 
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in which the relativistic linear momentum of m space is: 

p -=- J1 . 
\ \ -----;---

- J~\ 
The Euler Lagrange equation is therefore the orbit equation: 

)f 

in which the relativistic linear momentum is: 

The orbit equation ( l ) is the relativistic generalization in m space of the well known 

classical orbit equation 
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In Eq. ( l ): 
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which does not exist in Minkowski spacetime or in classical orbit theory. This is the force due 



tom space or "vacuum force" denoted F(vac). In ECE theory: -. 

where ~ is the gravitational potential and .Q_ ( the radial spin connection vector: 

SL ~.sL< R_ -( ~~J 
-<" -~· 

Therefore: - r.-;; '{, J..t...e) ~ ( -
f ( -1~0 - _Q_( ~ - - ---- . - :;). tl(, 

In this equation: (10 ~~(0_ - tl~(<) k-
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Therefore using computer algebra, the force due to m space, synonymous with vacuum force, 

IS: 

It becomes infinite at the point: 

{ <l~(r) - ~~(<) 
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form which the m function for infinite transfer of energy may be found. This is graphed in 

Section 3. 

The equations of motion ofthe orbit in m space are: 

(0 



and 

In the usual ( r 
1 

and the angular momentum is: 

The orbit equations are those of conservation of the m space hamiltonian and angular 

momentum. In these equations the Lorentz factor of m space is: 

( 
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In the immediately preceding UFT papers it was demonstrated numerically that the orbit 

equations of m space rigorously conserve H and L. The theory and computation therefore pasS 

this severe and rigorous test of correctness. 

and 



In the preceding paper these were integrated numerically to give any observable orbit in terms 

of any function m. This procedure goes considerably beyond the standard modeL in which m 

is restricted to: 

by the incorrect Einstein field equation. The m theory of this paper gives startlingly original 

results such as infinite vacuum energy and superluminal motion and retrograde orbits 

observable in the newly discovered S2 star { 1 - 41}. The incorrect Einstein field equation is 

wholly incapable of giving any of these results. 

In the Minkowski limit (Note 417(2)), Eqs. ( )'4-) and ( )5 ) reduce to: 
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given in an earlier UFT paper. In the limit: 

Eqs. ( )"1) and ( ).~ ) reduce to the classical orbit equations: 
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Eq. ( "!>I> ) is the Leibniz equation and Eq. ( 1> \ ) is equivalent to the conservation of 



classical angular momentum: 

Consider the force generated by m space (or vacuum force): 

j ~l:> 
~~c ~(() 

The work done by this force is: 

-:- T; -~ =- l.Al-Lt) 
~(b~) 

where\) --1""\ is the change in kinetic energy and tl, -V) is the change in potential 

energy. The hamiltonian is conserved: 

so: 

The potential energy equation: 

-
is satisfied by: 

f 

so the potential energy of m space is: 



and the energy becomes infinite under the condition ( \~ ). The potential energy (!1\ ) 
imparts the kinetic energy: 

to material matter. This is denoted "energy from m space'' or energy from spacetime. 

This energy reveals itself in the radiative corrections for example and can be 

trapped in a circuit as described in UFT311, UFT32L UFT364, UFT382 and UFT383. In a 

thought experiment it is possible to consider the Coulomb law in m space as follows: 

~ \f') f2 
~ ~(() -<C 

where the relativistic momentum in m space is: 

and the Lorentz factor in m space is: 

In Section 3 it is shown that the Lorentz factor in m space gives superluminal motion, 

opening up the possibility of superluminal motion between planets of the solar system, and 

between stars known to have planets. The vacuum force on one electron is given by Eq. 

( ~~ ). In immediately preceding UFT papers we have c~nsidered this vacuum force in terms 

of shivering and zitterbewegung as in Lamb shift theory. Isotropic averages of zitterbewegung 



as in Lamb shift theory can be now be developed in terms of the force ( ~_3 ). 

The m function is defined by the well known infinitesimal line element of the 

most general spherically symmetric spacetime: 
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in plane polar coordinates ( <" 
1 
t ). In m space, them function is not constrained by the 

incorrect Einstein field equation. This property introduces large number of possibilities in 

cosmology. 

There is nothing equivalent to m force in Minkowski spacetime, whose lagrangian 

IS: ") ( -""l)1/)- u -f - -~v \ --~-- ') J. ") 

( 
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where the classical lagrangian is: 
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So the rest energy in m space is: 

- ( 4-~) 



and the classical kinetic energy in m space is: 

--~c <) ~~) 
The infinitesimal line element of m space, Eq. ( 4~ ), is the origin of the frame 

rotation due to underlying spacetime torsion: 

where: 

) 1 1 
ls -::..- c ~-r 

and 6-J is the angular velocity ofthe frame rotation. As shown in Note 410(7) the newly 

discovered retrograde precession of the S2 star is explained by: 

but has no explanation in the Einstein field equation. In these equations the orbital linear 

velocity of frame rotation is: 

where: 

As shown in Note 417(6), forward precession is described by: 
'l 

n < "'l I "). _ ) '\.[ ">) tfr) L< 
(}.._~ - l c t ( - -:\ 

- s~ J 
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< 1--f 

and retrograde precession by: 



For forward precession in the classical limit, the orbit is: 

\ ~ fcos ( f ~~\-) 
with precession: evT - C s<(,) 

where T is the time needed to complete one orbit. 

For retrograde precession the orbit is: ~ 

(- J - (s"J. 
\ lr-(l•.r(f-c.lt) 

and the precession is: -_w \ 

This equation explains the retrograde precession of - 1 degree per orbit of the S2 star by 

using the observed T of the S2 star - about fifteen earth years and measuring lA> by 

' observation. The result from the Einstein field equation is completely incorrect. It is+ 0.2 

degrees per orbit of the S2 star. 

compming~; rl~< ~ ~U) ~ ~(_L- _, (~\ (b~ 
~ 0 ~c0 J c 

and m ( r) can be found by computer algebra. It is discussed and graphed in Section 3. If: 

then 
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Similarly for retrograde precession: 

G-
-1 /J 

By ex(panding the Lorent~ factojr of ~~~;ace 1 b t _ ( :L \ 
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it follows that the hamiltonian ( l \ ) of m space can be developed as: 
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Now subtract the rest energy ( ~~ ) from the hamiltonian to give the reduced hamiltonian: 

\~ o - \-\ - r,._(_ (')I b h-v". - ( t '{) 

In the ( ( 
1 
t ) coordinate system: • 

• ) J ~ )) 
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The angular momentum in m space is: • 

"') 
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so the reduced hamiltonian is: 

Now use the approximation: 

in the classical limit: 

to give the reduced hamiltonian: . ') 
cJ .L~< 

)._ --n..-( (-) ~---:'>~. 

In the limit: 

~c{)~\ -(15) 
this reduces to the well known classical result: 

which gives the static conic section 

\-\- f- (OS f 
) 

The approximation ( 1~ ) considerably simplifies the calculation, because '6 in 

the original equation ( \\ ) contains v, and in the approximate expression ( \\r ) does no~ 

contain v. 

From Eq. ( 1.'-1- ): 



which in the classical limit becomes: 

in the classical limit ( "lJ ). Therefore the orbital velocity in m space is, in approximation 

( {~ ): 

~ ".) _,_ ~n-.(5) ~~~ ( \-t +- ~ U) ,,) ~ rn;: 
~ 

FromEq. ( ~~ ): 
") 

\\ .L ~" t\ () -=- J r------:~:-7( :l 
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so using Eq. ( Q) in ( ~\ ) gives: \ (-:J ( ~rn&- _ fhm ~) - r~~ 
\4 o ~ \-\ () ~ ~c ~) <" -< · 

This shows that Eqs. ( ~ \) and ( <bJ. ) are self consistent, Q. E. D. 

For small departures from Newtonian theory: 



where a is the semi major axis of the orbit. So { 

-..{. '). - ~u) "!> J m. &-

In the limit: -c~' 
~c<) ~ 1_ - (r4) 

Q.E.D. Eq. ( <t$) gives a method of measuring them function from observations ofv 

and r in any orbit. Eq. ( -t_> ) gives the quartic equation: 
~ 

'>- " ~~ 
4- ~ 

d.. 0.. X- - ( X--

VVL& -
where: 

V'r-( 0 1/-3 -(~") 

This is solved for the four roots in Section 3, and the results graphed. Note that Eq. 

( <b \ ) is true for any orbit within the approximations used. 

3. SUPERLUMJNAL MOTON. GRAPHICS AND DISCUSSION. 

Section by dr. Horst Eckardt. 
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3 Superluminal motion, graphics and discussion

In this section we deepen several aspects described in section 2.

3.1 Vacuum force

The vacuum force as given in Eq. (17) is

F(vac) = m(r)
3
2
dm(r)

dr

γmc2

r dm(r)
dr − 2 m(r)

er. (90)

It can be seen that F(vac) vanishes for a constant m(r). Only a cosmology with
the most general spherical spacetime gives a vacuum force which is contained in
the constants of motion H and L. When vacuum effects not originating in this
force are present, we have to introduce them via

Fext(vac) = −∇Φ +mΩ Φ (91)

where Φ is the gravitational potential and Ω is the vector spin connection. In
this case H and L will not be conserved. The same holds when Fext(vac) is
reduced to its radial component.

We computed the vacuum force for the exponential m(r) function we used
in preceding papers, given by:

m(r) = 2− exp
(

log (2) exp
(
− r
R

))
. (92)

m(r) and dm(r)/dr are graphed in Fig. 1. The derivative increases significantly
for r → 0. We recomputed the dynamics of the collapsing orbit presented in
Fig. 2 of UFT 416. From the trajectory results we computed the vacuum force
(90) which is graphed in Fig. 2. As expected it vanishes for large r and drops
to negative infinite values for r → 0.

∗email: emyrone@aol.com
†email: mail@horst-eckardt.de
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The vacuum force can be computed without solution of dynamics if we as-
sume a constant γ factor. Using the Schwarzschild-like m function

m(r) = 1− r0
r
− α

r2
(93)

we computed the vacuum force in this way. Inserting the above m(r) into Eq.
(90) the denominator vanishes for certain values of r:

r
dm(r)

dr
− 2 m(r) = 0. (94)

Inserting the m function (93) into this equation gives the solutions

r1,2 =
3 r0
4
± 1

4

√
9r02 + 32α. (95)

For α = 0 the original Schwarzschild m function is obtained with the divergence
point

r1 =
r0
2
. (96)

This vacuum force has been graphed in Fig. 3 for r0 = 1 and two values of
α. There is a pole at r = 1.5, indicating infinite energy from spacetime at this
point. For r < 1 the function is imaginary and not defined. Increasing α shifts
the pole to the right.

The same graph was computed with the exponential m(r) of Eq. (92) for
two values of the parameter R, see Fig. 4. There is a minimum of F (vac) which
moves to r = 0 for R → 0. This explains that for small R (which was used in
the Lagrange solutions) the vacuum force seems to go to infinity for r → 0 like a
hyperbola. This m function is much more well behaved than the Schwarzschild-
like function because it is positive and does not contain zero crossings for r → 0
which would represent event horizons.

As explained, the vacuum force becomes maximal if the denominator of Eq.
(90) goes to zero, leading to Eq. (94). This equation can be consideres as a
differential equation for m(r) which has the general solution

m(r) = c1r
2 (97)

with a constant c1. This means that for such a quadratic m(r) the vacuum force
is infinite everywhere. However the m function has to have the limit m(r)=1
for large r. Therefore we compose a function which is quadratic for r → 0 and
constant for r →∞:

m(r) =

{
r2

2a2 for r < a,

1− a

4(r− a
2 )

for r ≥ a. (98)

It can be checked that m(r) is continuous and continuously differentiable at
r = a. Both cases in (98) give

m(a) =
1

2
, (99)

dm(r)

dr
(a) =

1

a
. (100)

This function is graphed in Fig. 5 for a = 1/2, The corresponding vacuum force
and its denominator are graphed in Fig. 6. It is seen that the vacuum force
drops massively when r approaches 1/2.
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Figure 1: Exponential m function and its derivative.

Figure 2: Vacuum force from the trajectories of relativistic Lagrangian dynam-
ics.
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Figure 3: Vacuum force of Schwarzschild-like functions m(r).

Figure 4: Vacuum force of exponential functions m(r).
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Figure 5: m function composed of terms r2 and 1/r2.

Figure 6: Denominator of vacuum force and vacuum force of composite m func-
tion from Fig. 5.
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3.2 Rotational m theory and superluminal motion

Spacetime rotation was described by angular rotation of the line element in
previous papers, leading to the results (55, 56) for forward and retrograde pre-
cession. Comparing these line elements with that of m theory (44) leads to the
equations

3
vφ

2

c2
=

(
1

m(r) − 1
)
vr

2

c2
−m(r) + 1, (101)

−vφ
2

c2
=

(
1

m(r) − 1
)
vr

2

c2
−m(r) + 1 (102)

for both precessions respectively. vφ = ω r is the angular component of space-
time rotation frequency ω at radius r. These equations are quadratic in m(r).
Their solutions can be determined by computer algebra for forward precession:

m1,2,f (v) =
1

2
+

1

2c2

(
− v2r − v2φ (103)

∓
√
vr4 + 6vφ2vr2 + 2c2 vr2 + 9vφ4 − 6c2 vφ2 + c4

)
and for retrograde precession:

m1,2,r(v) =
1

2
+

1

2c2

(
− v2r + v2φ (104)

∓
√
vr4 + (2c2 − 2vφ2) vr2 + vφ4 + 2c2 vφ2 + c4

)
.

m(r) depends on velocity components vφ and vr only, therefore we have written
m(v). Please notice that vr is the radial component of the regular orbital velocity
while vφ does not has its origin in dynamics but in spacetime rotation. The
orbital dependence (r, φ) has to be derived from the dynamics of a specific
system. m(r) is pre-defined in this way, i.e. for frame rotation there is no
arbitrary choice of m(r) possible or required, respectively.

Simple approximations for (103, 104) for v � c were given by Eqs. (63, 64):

mf (v) =1−
3 v2φ
c2

, (105)

mr(v) =1 +
v2φ
c2
. (106)

The exact and approximate solutions were graphed. To obtain a simple pa-
rameter dependence, we assumed vr = 0.2 vφ for simplicity so that m depends
only on one parameter: m(vφ). The curves (Figs. 7, 8) are quite different for
forward and backward rotation. For forward rotation (Fig. 7), the first solution
is negative and unphysical, the second starts at m(vφ)=1 (non-relativistic limit)
and approaches low values for vφ → c, where c has been set to unity here. The
simple formula (105) deviates from the exact formula (103) above vφ ≈ c/2 and
drops to negative values then. It holds only in the low velocity limit as expected.

For retrograde precession (Fig. 8) we have to take the second solution again.
m starts at unity and goes up to 2 for vφ = c. The conformance to the simple
formula is good over the whole range of vφ ≤ c. The fact than m(v) exceeds unity
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can be interpreted as superluminal motion as follows: From the generalized γ
factor (43),

γ =
1√

m(r)− v2

m(r) c2

, (107)

we see that the m function alters the effective velocity of light by

c2 → m(r) c2. (108)

Therefore m(r) > 1 means superluminal motion; at least it is possible from the
dynamics in this case. The curves in Fig. 8 are continuing to vφ > c without
singularities. It seems that the asymptotic velocity barrier v = c is is suspended
here. The dependence of the genealized γ factor on the m function has been
graphed in Fig. 9. The ratio v/c has been taken as a parameter. As can be seen,
the γ factor goes to infinity for m(r)→ 0 as found in the dynamics calculations.
For v/c > 1 this limit is reached already above m(r)=1. For cases m(r) > 1
the γ factor takes values smaller than unity. This behaviour is unknown in
Einsteinian special relativity.

Another point is why forward and backward frame rotation behave so dif-
ferently. Formally this comes from the line element which is not symmetric for
dφ + ω dt and dφ − ω dt. Forward precession means that spacetime is rotated
in direction of the orbiting mass while retrograde precession is a motion of the
mass against spacetime rotation. Therefore vφ may exceed c in the observer
system. Details depend on the complete γ factor and the dynamics. The enor-
mous consequences are to be developed by continuative investigations in theory
and experimentally in astronomy.

3.3 Quartic equation

The quartic equation (88) provides a connection between an orbital velocity v
and the geometry function m: The equation

2ax4 − rx3 =
v2ra

MG
(109)

has to be solved for x =
√

m(r) to obtain m(r). This is a method of determining
the m function from experimental data pairs (v, r). Computer algebra gives
two imaginary solutions and two real solutions of Eq. (88) which are highly
complicated. We used the real solutions m3 and m4 in the following. First we
defined the velocity by

v2 = MG

(
2

r
− 1

a

)
(110)

which is the Newtonian dependence for m(r)=1. a is the semi-major axis of the
orbit. The solutions m3 and m4 are graphed in Fig. 9. Obviously m3 goes down
to zero and up again, while m4 gives the straight line m=1 as is expected from
the input form of v(r). The predefined “input” function m(r)=1 was graphed
additionally. Obviously m3 coincides with this function over the full range of r
investigated. This proves that the method works as expected.
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In Fig. 10 we have shown the general case

v2 = m(r)
3
2MG

(
2
√

m(r)

r
− 1

a

)
(111)

where v has been calculated with

m(r) = 1− 0, 5

r2
. (112)

In principle we obtain the same result as before: the given m(r) is reproduced by
the third solution of the quartic equation (108). When applying the method as
proposed, one would use pairs of data (ri, vi) from astronomical measurements.
Inserting these into the solution m3 gives points m3(ri, vi) from which the func-
tion m(r) can be reconstructed. The problem of contemporary astronomy is
that velocities and distances cannot be measured very precisely so it will not be
possible to determine small deviations from m(r)=1 experimentally. However
in special cases as pulsars quite precise astronomical data are available.

Figure 7: m functions for forward precession and approximation for small ve-
locities.
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Figure 8: m functions for retrograde precession and approximation for small
velocities.

Figure 9: Generalized gamma factor in dependence of m(r) for some values of
v/c.
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Figure 10: Solutions of the quartic equation with m(r) = 1.

Figure 11: Solutions of the quartic equation with m(r) = 1− 0.5/r2.
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