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ABSTRACT 

It is shown that the rest energies observed experimentally for particles which mediate 

nucleon interactions can be described straightforwardly by a modification of the well known 

de Broglie rest mass equation. The latter is modified with the expectation value of 1 I m ( \ ) 

where m ( r ) is the function that defines the most general spherically symmetric space. So 

particle masses are determined by the nature of space itself. 
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1. INTRODUCTION 

In immediately preceding papers of this ~eries { 1 - 41 } the m theory of 

elementary particle physics has been initiated, with applications to low energy nuclear 

reactions (LENR). A straightforward explanation for LENR has been discovered based on the 

force of m space define by Euler Lagrange dynamics in UFT 41 7. The existence of this force 

was confirmed using the Hamilton equations of motion in UFT428. Them force emerges 

from well accepted infinitesimal line elements used to describe the most general spherically 

symmetric space. In Section 2 of this paper them theory is used to define the rest energy of 

any particle that is observed experimentally to mediate nucleon interactions. The rest energy 

is the expectation value of an m ( ( ) function calculated with a well defined wavefunction 

which must be a solution ofthe quantized energy equation ofm theory. For example. prot0n 

neutron interaction is mediated by three pions, three rho mesons and an omega meson. In 

Section 3, the results of Sections 1 and 2 are analyzed numerically and illustrated graphically. 

This paper is a short synopsis of extensive calculations found in the 

notes accompanying UFT433 on \VWw.aias.us. Note 433(1) is a review of the methods of 

quantization used in m theory. Note 433(2) is a scheme for the determination of the number 

of mediating particles. Note 433(3) applies them theory to particle beams. Note 433(4) 

defines plane wave solutions ofthe quantized energy equation ofm theory. Note 433(5) 

defines the equation for the rest energy of any particle, and is the basis for Section 2. Note 

433(6) is a check on the plane wave solution. 

In section 3 the essential method of application ofthe paper is illustrated, 

and it is found that a Bessel type solution is preferred to a plane wave solution. The number 

and rest energies of elementary particles mediating a given nucleon interaction depend on a 

choice of h\( (J function and wavefunction. 



2. THE REST ENERGY OF ANY PARTICLE 

Consider the relativistic energy equation of m theory { 1 - 41 } 
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Here E is the total relativistic energy, p the relativistic momentum, m ( r) them function of 

the space in which the theory is being developed, m is the mass of the particle and c the speed 

of light. Write this equation as: 

and evaluate its expectation value: 
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where the wavefunction i is the solution of the quantized energy equation: 
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and assuming that the wavefunction is radial: 

so: 

For the rest particle the momentum term is zero so 
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For a given wave function i the number of particles that are observed to mediate a 

nucleon nucleon interaction is given by Eq. ( \ 0 ), together with their experimentally 

observed rest masses. It has been assumed that them space is that of a stationary metric, so 

m ( ( ) has no dependence on t. 

For example, the interaction between a proton and a neutron is mediated by 

particles and antiparticles defined in the following table 1. 
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So Eq. ( \0 ) must produce five energy levels. The wavefunction is always defined by 

the quantized energy equation: 



_0 

where in general is a function of r and t. Therefore the number of energy levels 

and therefore the number of particles mediating the nucleon nucleon interaction must be 

found by optimizing ~ and ""(~umerically. This process is illustrated in Section 3. 

3. NUMERICAL ANALYSIS AND GRAPHICS. 
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3 Numerical analysis and graphics

3.1 Some examples with Bessel functions

In this section we further inspect some details of m theory applied to elementary
particles. In UFT 431 we had identified Bessel functions as possible solutions
to the wave equation. Before discussing the wave equation of m theory in more
detail in the next section, we consider the suitability of Bessel functions in the
wave function context.

In Fig. 1 the Bessel function j1(x) is graphed as an example, together with
its derivative dj1(x)/dx and its integral

∫
j1(x)dx. Differentiation gives a sum of

other Bessel functions, integration leads to an expression with a hypergeometric
series. It is seen that all three expressions give similarly oscillating functions
with a certain phase shift.

Alternatively, we can consider the first parameter a of the Bessel function
as a variable, evaluating ja(x0), dja(x0)/da and

∫
ja(x0)da for a fixed x0 = 1.

The corresponding results are graphed in Fig. 2, indicating that increasing a
leads to functions falling asymptotically to zero.

A wave function must be normalizable:∫
ψ∗(r)ψ(r) r2dr = N (12)

for the radial coordinate r with N <∞. This is not the case for Bessel functions
and squared Bessel functions. Therefore we have to augment them by a function
dropping fast enough to zero. We define

ψ(r) := jr20 (r) exp(− r

2r0
) (13)

which gives N = 0.930 for r0 = 2. The wave function has to be normalized with
this factor:

ψ(r)→ 1√
N
ψ(r). (14)
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With this normalized wave function we can compute the expectation value of
the m function. We define m(r) as in earlier papers by

m(r) = 2− exp

(
log(2) exp(− r

r0
)

)
. (15)

Then the expectation value is∫
ψ∗(r) m(r)ψ(r)r2dr = 0.945. (16)

For demonstration we have graphed in Fig. 3 the original Bessel function for
r0 = 2, the modified wave function (13) and the integrand of the expectation
integral integral (16). It is clearly seen that the modified functions drop zo zero.
The calculation of the expectation vaule can be formulated scale invariantly, i.e.
using the true particle radius in fm does not change the result. The masses of
elementary particles will be computed in a later paper.

3.2 Some details on the wave equation

The wave equation was derived from fundamentals of ECE theory in UFT 51.
The ECE Lemma, Eq. (7.24) of UFT 51, reads:

� qaµ = Rqaµ (17)

with tetrad qaµ and scalar curvature R. The Einstein Ansatz (7.38/39) is

R = −kT (18)

where k is the Einstein constant and T is the energy-momentum scalar. In
quantum physicls we have to replace this by

kT →
(mc

~

)2
, (19)

which leads to the Proca equation (7.18) for photon mass mp:(
� +

(mpc

~

)2)
Aν = 0 (20)

where Aν are the components of the electromagnetic potential. Alternatively
to the Proca equation follows the Dirac equation (7.48) with spinors φ:(

� +
(mec

~

)2)
φ = 0 (21)

for electron mass me. Using only the space part of the d’Alembert operator

� =
1

c2
∂2

∂t2
−∇2 (22)

we obtain(
−∇2 +

(mc
~

)2)
ψ = 0 (23)
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for the wave function ψ of a particle with mass m.
The signs in the wave equation – although seemingly a minor difference – are

very important. The solutions of the differential equation (in one dimension)

d2ψ(x)

dx2
+ κ2ψ(x) = 0 (24)

are oscillatory:

ψ(x) = k1 sin (κx) + k2 cos (κx) , (25)

while the solutions of

−d
2ψ(x)

dx2
+ κ2ψ(x) = 0 (26)

are exponential:

ψ(x) = k1 exp (−κx) + k2 exp (κx) . (27)

Obviously Eq. (23) is of type (26) and has exponential solutions. Setting the
constant k2 = 0 gives an exponentially decreasing wave function and charge den-
sity, which is physically meaningful. For spherical problems, the corresponding
radial differential equation (with spherical ∇2) is not analytically solvable. The
solutions are exponential as above in the far field limit. When the differential
equation contains a radius-dependent κ as is the case of m theory, see Eq. (6):(

−∇2 + m(r)
(mc

~

)2)
ψ = 0, (28)

then the exponential solution is augmented by oscillations similarly as in Fig. 3.

3.3 Towards a radial function for elementary particles

Eq. (28) is similar to the radial Schrödinger equation with angular momen-
tum zero. It is an eigenvalue equation for the mass m with eigenfunctions ψ.
The same solution method as for the radial Schrödinger equation should be
applicable. We solved a similar problem in UFT 260 for the so-called Partons.

In the Schrödinger equation the spherical operator ∇2 is simplified by the
function substitution

ψ(r) =
φ(r)

r
. (29)

The Schrödinger equation then reads(
d2

dr2
+ k2(r)

)
φ = 0 (30)

with the non-differential factor

k2(r) =
2m

~2

(
E − l(l + 1)~2

2mr2
− V (r)

)
. (31)
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We can use the same substitution (29) for Eq. (28). Then we have(
d2

dr2
+ k2(r)

)
φ = 0 (32)

with

k2(r) = −m(r)
(mc

~

)2
. (33)

Notice that k2(r) is negative. Solving the radial Schrödinger equation is tricky
because the boundary conditions cannot be given by defining φ and dφ/dr at
one point. Instead two function values of φ have to be given at two points so
that the solution does not diverge for large r. Non-divergence appears only for
discrete values of E, the eigenvalues. A special numerical scheme is commonly
used for the solution procedure, called Fox-Goodwin or Numerov method. This
method has been applied in UFT 260 for solving the radial equation for Partons.
The method has still to be worked out for Eqs. (32/33). We present only an
example where φ and dφ/dr have been given at r = 0 so that the standard
Runge-Kutta solver of Maxima can be applied. In Fig. 4 the functions φ(r)
and ψ(r) are graphed for certain parameters. It is seen that the solution ψ
resembles a hyperbola while φ is nearly linear. It is not clear if the application
of the Numerov method will give physical solutions because the factor k2(r) is
purely negative. These complicated numerical problems have to be solved in
future.

Figure 1: Example for Bessel function j1(x), its derivative and integral.
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Figure 2: Example for Bessel function ja(x0) for fixed x0, its derivative and
integral.

Figure 3: Bessel function, modified Bessel function and spherical integrand of
Eq. (16).
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Figure 4: Preliminary solution of Eqs. (32/33), and function m(r).
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