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Abstract

Generally covariant wave mechanics is developed from Einstein Cartan Evans
(ECE) field theory. The ECE lagrangian density is identified and used in the
ECE Euler Lagrange equation to identify the origin of the Planck constant as
a minimized action of general relativity. It is shown that the Planck constant
as used in special relativity (standard model wave mechanics) is a special case
in which volume is fortuitously cancelled out. More generally the commutator
equation of Heisenberg must include volume. The Cartan structure equation,
Cartan torsion, and Bianchi identity are derived from the lagrangian density.
The Aspect experiment is explained using ECE wave mechanics, and quantum
entanglement is described using the spin connection term of ECE theory. The
Bohr Heisenberg indeterminacy is discarded in favor of a causal, objective and
unified wave mechanics. Phase velocity, v, in ECE wave mechanics can become
much greater than c (which remains the universal constant of relativity theory)
and the equations defining the condition v � c are given.

Keywords: Einstein Cartan Evans (ECE) field theory; generally covariant wave
mechanics, origin of the Planck constant; ECE lagrangian density; derivation of
the Cartan structure equation, Cartan torsion and Bianchi identity; description
of the Aspect experiment and quantum entanglement, greater than c phase
velocity.
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10.1. INTRODUCTION

10.1 Introduction

Recently [1]– [38] it has been shown that the origin of generally covariant wave
mechanics is the tetrad postulate of Cartan geometry [39,40], the fundamental
requirement that a vector field be independent of the coordinate system used to
describe it. General covariance in physics means that its equations are covariant
under the general coordinate transformation. This means that they retain their
form, a tensor in one coordinate system must be a tensor in any other coordinate
system. The equations of physics are therefore objective to an observer in one
reference frame moving in an arbitrary way with respect to an observer in any
other reference frame. The requirement of objectivity in physics manifests itself
as this fundamental principle of general relativity and without this principle
there is no objective physics, nature would mean different things to different
observers. Special relativity is known to be accurate to one part in twenty seven
orders of magnitude and general relativity to one part in one hundred thousand
for the solar system. So the principle of objectivity is tested to high precision.
The other fundamental attribute of relativity theory is that the constant c be
universal. This is usually interpreted to mean that no information can travel
faster than c and other constants in physics are based on a fixed c in standards
laboratories worldwide. The constancy of c is needed to ensure causality, to
ensure that nothing happens without a cause.

Throughout the twentieth century, general relativity was thought to be in-
compatible with the principle of indeterminacy developed mainly by Bohr and
Heisenberg. This principle states that pairs of variables such as position x and
momentum p behave in such a way that if one is known exactly (for example x),
the other (for example p) is unknowable. This assertion is based on a variation
inferred by Heisenberg of the Schrödinger equation of non-relativistic wave me-
chanics. There is nothing, however, in the original Schrödinger equation which
implies indeterminacy, the Schrödinger equation is based [41] on the fact that ac-
tion is minimized in particles by the classical Hamilton principle of least action,
and that time interval is minimized in waves by the classical Fermat principle
of least time. The Heisenberg commutator equation is a restatement of the
Schrödinger equation. It has been shown [1]– [38] that the Schrödinger equa-
tion is a well defined non-relativistic quantum limit of the Einstein Cartan Evans
(ECE) wave equation of general relativity. Therefore the Schrödinger equation
has been shown to be objective and causal and has been shown to be an equa-
tion of relativity theory. It follows that the Heisenberg commutator equation
is also objective and causal. It cannot lead to Bohr Heisenberg indeterminacy
and cannot lead to anything that is unknowable. Recently [42]– [45] the Bohr
Heisenberg indeterminacy principle has indeed been refuted experimentally in
several independent ways, all of which are repeatable and reproducible. Inde-
terminacy is therefore an intellectual aberration which worked itself uncritically
into thousands of textbooks of the twentieth century era.

In Section 10.2 the lagrangian density of generally covariant unified field the-
ory is deduced and used to derive the fundamental ECE wave equation. There-
fore from the outset the concept of volume is introduced into wave mechanics
because the lagrangian density has the units of energy divided by volume. It
has been shown [1]– [38] that the experiments of Croca et al. [42], experiments
which refute indeterminacy experimentally, can be explained by ECE theory
with the introduction of volume into the Heisenberg commutator equation. The
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CHAPTER 10. WAVE MECHANICS AND ECE THEORY

ECE lagrangian density inferred in this Section is the fundamental origin of
this volume. Key quantities in wave mechanics must therefore be densities, in
common with the rest of general relativity. This deduction is seen at work in
the fundamental ECE wave equation [1]– [38]:

(� + kT ) qa
µ (10.1)

Here k is Einstein’s constant, T is the index reduced canonical energy momen-
tum, a concept first introduced [46] by Einstein, and qa

µ is the tetrad of Cartan
geometry [39,40], the fundamental unified field of ECE theory. In the rest frame:

T = m/V (10.2)

which is mass divided by volume. The lagrangian density in this limit is:

L = c2T =
mc2

V
(10.3)

and is the rest energy divided by volume. All other wave equations of physics
are limits of the ECE wave equation [1]– [38], so volume is inherent in all of
them. In this section it is shown that the Cartan structure equation and the
Bianchi identity of Cartan geometry can be derived form the same lagrangian
density. It is thus inferred that all of physics (both classical and quantum)
derives from the tetrad postulate, the fundamental mathematical requirement
that a complete vector field is independent of the way it is written, independent
of the coordinate system used to define the vector field. This inference leads to
an unprecedented degree of simplicity and fundamental understanding.

In Section 10.2 the fundamental origin of the Planck constant is discussed
within ECE field theory using fact that action is:

S =
1
c

∫
Ld4x (10.4)

an integral of the lagrangian density L over the four-volume d4
x. Action has

the units of energy multiplied by time, and these are also the units of angular
momentum. Using these concepts the fundamental Planck Einstein and de
Broglie equations of quantum mechanics are derived within the concepts of
ECE field theory and thus of general relativity. This derivation is not possible
in the standard model because there, wave mechanics is not generally covariant.
The evolution of the tetrad in ECE theory is governed by:

qa
µ (xµ) = exp

(
iS

~

)
qa

µ (0) (10.5)

where S is the action and ~ a constant of proportionality introduced to make the
exponent dimensionless as required. This is the reduced Planck constant. The
fundamental origin of Eq. 10.5 is wave particle duality. In ECE theory there
is no distinction between wave and particle, both are manifestations of ECE
spacetime. The Dirac electron, for example, is defined by the limit [1]– [38]:

kT =
m2c2

~2
(10.6)
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10.2. LAGRANGIAN FORMULATION OF GENERALLY . . .

of the ECE wave equation 10.1. This is not a point particle, because from Eqs.
10.3 and 10.6 emerges the rest volume of any particle:

V0 =
k~2

mc2
. (10.7)

The wave nature of the Dirac electron is governed by the same ECE wave
equation through the SU(2) representation of the tetrad [1]– [38]. In Section
10.3 it is shown that the Planck constant is a limit of Eq. 10.4, a limit in which
the volume V fortuitously cancels. There is a lot more to the Planck constant in
generally covariant unified wave mechanics than the standard model’s quantum
mechanics.

In Section 10.4 the Aspect experiment and quantum entanglement are dis-
cussed within the context of generally covariant and causal wave mechanics, and
finally in Section 5 it is shown that under well defined circumstances, the phase
velocity, v, of a generally covariant wave can become much larger than c, and
indeed approach infinity. The phase velocity v � c, combined with the spin
connection, lead to many new inferences and possible new technologies.

10.2 Lagrangian Formulation Of Generally Co-
variant Wave Mechanics

It is seen by inspection that the generally covariant Euler Lagrange equation:

∂L
∂qν

a

= Dµ

(
∂L

∂ (Dµqν
a)

)
(10.8)

with the lagrangian density:

L = c2T +Dµq
a
µD

µqν
a (10.9)

gives:
Dµ (Dµq

a
ν ) = 0. (10.10)

This is the ECE Lemma [1]– [38], which is obtained by covariant differentiation
of the tetrad postulate [39,40] of Cartan geometry:

Dµq
a
ν = 0. (10.11)

Using the fundamental definition:

qa
µq

µ
a = 1 (10.12)

the Leibnitz Theorem is applied to give:

Dν

(
qa

µq
µ
a

)
= qa

µ (Dνq
µ
a) +

(
Dνq

a
µ

)
qµ

a (10.13)

Using Eq. 10.11 in Eq. 10.13 gives:

Dνq
µ
a = 0. (10.14)

Therefore Eq. 10.9 is:
L = c2T. (10.15)
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CHAPTER 10. WAVE MECHANICS AND ECE THEORY

In the rest frame limit this becomes Eq 10.3 as discussed in Section 10.1. There-
fore the second term in Eq. 10.9 is needed to give the lagrangian from which
the ECE Lemma and wave equation are derived by variational calculus and
minimization of action. Eq. 10.10 can be rewritten in the form [1]– [38]:

�qa
µ = Rqa

µ (10.16)

where R is a scalar curvature defined as follows. Using the Einstein Ansatz [1]–
[38]:

R = −kT (10.17)

the ECE Lemma becomes the ECE wave equation 10.1 of Section 10.1. This
is the fundamental and generally covariant wave equation of ECE field theory.
All the major wave equations of physics can be derived from Eq. 10.1 [1]– [38]
in various limits, for example the Dirac equation of special relativistic wave
mechanics and the Proca equation of electrodynamics (the d’Alembert equation
with photon mass). The ECE Lemma 10.16 follows [1]– [38] from the tetrad
postulate:

Dµq
a
λ = ∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν = 0. (10.18)

Here ωa
µb is the spin connection and Γν

µλ is the gamma connection [1]– [40].
Therefore:

Dµ (Dµq
a
λ) = ∂µ (Dµq

a
λ) = 0. (10.19)

i.e.
∂µ
(
∂µq

a
λ + ωa

µbq
b
λ − Γν

µλq
a
ν

)
= 0 (10.20)

or
�qa

λ = ∂µ
(
Γν

µλq
a
ν

)
− ∂µ

(
ωa

µbq
b
λ

)
. (10.21)

Now define the scalar curvature:

Rqa
λ = ∂µ

(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(10.22)

and use Eq. 10.12 to obtain:

R = qλ
a∂

µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
(10.23)

and to deduce Eq. 10.16, Q.E.D. Therefore Eq. 10.23 is the fundamental
definition of scalar curvature in ECE wave mechanics:

R = −kT = qλ
a∂

µ
(
Γν

µλq
a
ν − ωa

µbq
b
λ

)
. (10.24)

This lagrangian derivation of the ECE Lemma and wave equation is fully self-
consistent and is based on Hamilton’s principle of least action for the particle
and Fermat’s principle of least time for the wave. Therefore wave and particle
are terms which become obsolete: in ECE theory they are both manifestations
of space-time. Wave and particle are simultaneously observable as indicated by
recent experiments [42]– [45]. In the now obsolete Bohr Heisenberg indetermi-
nacy the wave and particle are never simultaneously observable.

The lagrangian formulation of ECE theory is also the lagrangian formalism
of Cartan geometry itself. A powerful simplicity of understanding is achieved
through the tetrad postulate, which is the fundamental mathematical require-
ment that a complete vector field V be independent of the system of coordinates
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10.2. LAGRANGIAN FORMULATION OF GENERALLY . . .

used to define it. The key difference between Cartan and Riemann geometry
resides in the basis elements used to define the tangent spacetime at a point P
in the base manifold [1]– [40]. In Riemann geometry the basis elements always
form the set of partial derivatives. In Cartan geometry the basis elements are
more generally defined and labelled by a. The tetrad qa

µ is the rank two mixed
index tensor defined by:

V a = qa
µV

µ (10.25)

where the vector elements V a are defined in the tangent space-time (Minkowski
space-time) and the vector elements V µ are defined in the base manifold (ECE
space-time). The tetrad postulate 10.18 follows from the fact that the complete
vector field V in the tangent space-time must be the same with basis set labeled
a and the Riemann basis set of partial derivatives. Eq. 10.18 is the rule for
the covariant differentiation of a mixed index rank two tensor [39], i.e. D − µ
acting on the rank two tensor qa

ν ). Therefore the tetrad is always a rank two
tensor with a matrix structure. With these fundamentals clearly defined it is
seen that the lagrangian density of ECE theory and Cartan geometry, Eq. 10.9,
contains a product of two tetrad postulates and the ECE Lemma and wave
equation are obtained by covariant differentiation of the tetrad postulate. So
everything stems from the fact that a complete vector field V is independent
of the vector components and basis element used to describe it. For example a
vector field V in three dimensional Euclidean geometry may be represented by
the cartesian unit vectors, i, j and k (the basis elements), and by the cartesian
vector components Vx, Vy and Vz:

V = Vxi + Vyj + Vzk. (10.26)

The same vector field V in spherical polar coordinates will have different com-
ponents and different basis elements but is the same vector field. If we extend
this reasoning to Cartan geometry the tetrad postulate 10.18 is the inevitable
result [1]– [40]. All of physics stems from this property of vector field V via the
ECE field theory. So physics is fundamental geometry.

The well known Cartan torsion is also a direct consequence of the tetrad
postulate. This was first demonstrated in vol. 2 of ref. [1] and the proof is as
follows. Consider two tetrad postulates:

∂µq
a
λ + ωa

µbq
b
λ = Γν

µλq
a
ν , (10.27)

∂λq
a
µ + ωa

λbq
b
µ = Γν

λµq
a
ν . (10.28)

All that has been done is to change the index labeling, so we have written out
the tetrad postulate twice. Subtract Eq. 10.28 from Eq. 10.27 to obtain the
Cartan torsion:

T a
µλ = T ν

µλ q
a
ν =

(
Γν

µλ − Γν
λµ

)
qa

ν

= ∂µq
a
λ − ∂λq

a
λ + ωa

µbq
b
λ − ωa

λbq
b
µ .

(10.29)

In differential form notation Eq. 10.29 is the first Cartan structure equation [39]:

T a
µν = (d ∧ qa)µν + ωa

µb ∧ qb
ν . (10.30)

In the standard notation of Cartan geometry the Greek indices of the base mani-
fold are omitted, because they are always the same on both sides of any equation
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CHAPTER 10. WAVE MECHANICS AND ECE THEORY

of Cartan or differential geometry, so Eq. 10.30 is written conventionally [39]
as:

T a = d ∧ qa + ωa
b ∧ qb

:= D ∧ qa.
(10.31)

The electromagnetic tensor is then defined directly from the Cartan torsion
through the ECE Ansatz [1]– [38]:

F a = A(0)T a (10.32)

where A(0) is a fundamental and universal voltage within a factor of c.
So we have obtained the electromagnetic tensor and the lagrangian density

using the same tetrad postulate. The lagrangian density 10.9 is the same for
both the wave and field equations of ECE theory. In the standard model [47] the
lagrangian formulation is both incomplete and considerably more complicated.
The complexity of the standard model is lack of understanding, the converse of
the complete and simple ECE theory given here.

The field equations of ECE theory [1]– [38] are obtained from the first Bianchi
identity of Cartan geometry:

D ∧ T a = d ∧ T a + ωa
b ∧ T b = Ra

b ∧ qb (10.33)

which states that the covariant derivative of the Cartan torsion is identically
equal to a cyclic sum of Riemann tensor elements [39, 40]. The first Bianchi
identity 10.33 again follows from the tetrad postulate, as demonstrated in full
detail in the appendices of chapter 17 of ref. [1]. Using the Ansatz 10.32 and
the equivalent ansatz:

Aa
µ = A(0)qa

µ (10.34)

in Eq. 10.33 produces the homogeneous field equation of ECE theory:

d ∧ F a = µ0j
a = A(0)

(
Ra

b ∧ qb − ωa
b ∧ T b

)
. (10.35)

The Hodge dual [1]– [40] of Eq. 10.35 is the inhomogeneous field equation of
ECE theory:

d ∧ F̃ a = µ0J
a = A(0)

(
R̃a

b ∧ qb − ωa
b ∧ T̃ b

)
. (10.36)

So we have linked all the fundamental equations of ECE theory with a lagrangian
formalism based on the minimization of action (Hamilton principle) and time
interval (Fermat principle).

Having achieved this unification of basic concepts it is now possible to de-
velop the fundamental equations of the incomplete standard model quantum
mechanics into principles of the completed theory sought for by Einstein and
Cartan: generally covariant wave mechanics. The minimization of action and
time interval are concepts which are central to wave mechanics and wave parti-
cle dualism. It is now possible to develop wave particle dualism into the concept
of indistinguishability of wave and particle because wave mechanics has been
recognized as a property of space-time. The ECE Lemma asserts that scalar
curvature itself is quantized, space-time itself is quantized. The wave is the
tetrad eigenfunction of the ECE wave equation or Lemma, the particle is also
space-time, always occupying a finite volume. In the rest frame limit of the
Dirac equation this volume is given by Eq. 10.7 In the standard model the con-
cept of point particle is still used, and this concept is in conflict with relativity
because it introduces singularities and the complexity of renormalization.
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10.3. PLANCK CONSTANT, PLANCK-EINSTEIN AND DE . . .

10.3 Planck Constant, Planck-Einstein And de
Broglie Equations, And The Schrödinger
Equation

In the rest frame the ECE lagrangian density is the rest energy divided by the
rest volume. Therefore the action in the rest frame is:

S0 =
∫
mc

V0
d4x0. (10.37)

The four volume in the rest frame is:

d4x0 = V0cdt0. (10.38)

Now identify the rest action with the Planck constant:

S0 = ~ (10.39)

and the integral over the time interval with the inverse rest frequency:∫
dt0 =

1
ω0

(10.40)

to obtain the Planck Einstein equation in the rest frame:

E0 = ~ω0. (10.41)

If applied to the photon rest mass this is also known [1]– [38] as the de Broglie
equation for photon rest mass. It is known experimentally that Eq. 10.41 also
holds for the photon when it travels for all practical purposes infinitesimally
close to the speed of light with respect to an observer in the rest frame. In
this case rest frequency is changed to ω. In special relativity this would be a
Lorentz transformation of angular frequency but in general relativity a general
coordinate transformation. However, the rest mass of the photon cannot be
identically zero in ECE theory, because the action would be identically zero.
The rest mass of the photon is very small but not zero. In ECE theory the
Planck constant is the rest frame limit of the action:

S = c

∫
Td4x. (10.42)

In the rest frame:

~ = mc

∫
d4x0

V0
(10.43)

and if: ∫
d4x0

V0
=

c

ω0
(10.44)

we obtain:
E0 = ~ω0 = mc2. (10.45)

More generally, and for any particle, the action that gives the ECE wave equa-
tion in any frame of reference is given by:

S =
1
c

∫
Ld4x (10.46)
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CHAPTER 10. WAVE MECHANICS AND ECE THEORY

and is the generalization of the Planck constant to any frame of reference. The
Planck constant in the rest frame is:

S0 = ~ =
1
c

∫
L0d

4x0 (10.47)

where V0 is the rest volume defined by Eq. 10.7. Therefore ECE theory shows
that the Planck constant in the rest frame must have an internal structure
defined by the four volume d4x0 and rest volume V0. The same is true in any
other frame, the rest volume being replaced by the volume in that frame of
reference. If the four volume is:

d4x0 = V0cdt0 (10.48)

it is found that
~ = mc2

∫
V0

V0
dt0 = mc2t0. (10.49)

The time interval t0 must be a constant for a given mass m. The existence of the
Planck constant means that a particle is never quite at rest, it must have a rest
frequency defined by Eq. 10.40 So there must be zero point energy defined by
Eq. 10.45. Classically the particle in the rest frame does not move relative to the
observer in the same rest frame, and there is no rest energy in a classical theory.
The rest energy mc2 is the result of special relativity theory as is well known.
ECE theory gives both the rest energy and the Planck energy ~ω0, showing
that it is a unified field theory . The fact that the Planck constant has an
internal structure that depends on volume is of key importance in modifying the
Heisenberg commutator equation in accordance with the experimental findings
[42] of Croca et al. This modification has been initiated in volume 2 of ref. [1].

The Fermat principle of least time [48] is the classical principle that governs
the propagation of light in optics. The path taken by the light through a medium
is such that the time of passage is a minimum. The amplitude of a light wave
at point P1 is related to the amplitude at point P2 by:

ψ (P2) = eiφψ (P1) (10.50)

where the phase φ is defined by:

φ = 2π
x

λ
. (10.51)

Here x is the coordinate and λ the wavelength [48]. Eq. 10.50 is the fundamental
origin of the Schrödinger equation. Light takes paths such that the phase is
minimized. This is the precise statement of the Fermat principle. In the limit
of geometrical optics φ is infinite, the light appears to travel in straight lines.
There is no curvature, and this is a ”weak field limit” of ECE theory in which
the interval t0 is minimized.

The propagation of particles is given classically by the Hamilton principle
of least action. Particles select paths between two points such that the action
associated with that path is a minimum. This classical statement is equivalent
to Newtonian dynamics in the weak field limit of ECE field theory. Particles
adopt a least path and waves a least time. The reason is the same, the phase
φ is minimized. So particles and waves become indistinguishable if the phase is

161



10.3. PLANCK CONSTANT, PLANCK-EINSTEIN AND DE . . .

made proportional to action and this is the fundamental idea of wave mechanics.
Thus φ is proportional to S and so the constant of proportionality must have
the units of inverse action because φ is unitless. In the classical limit φ is infinite
so the constant of proportionality approaches zero. Schrödinger’s equation is
recovered from this argument if:

φ =
S

~
. (10.52)

Eq. 10.50 describes a path from P1(x1, t1) to P2(x2, t2) [48]. Thus:

ψ (x2, t2) = eiS/~ψ (x1, t1) . (10.53)

Differentiate [48] Eq. 10.53 with respect to t2:

∂

∂t2
ψ (x2, t2) =

∂

∂t2

(
eiS/~ψ (x1, t1)

)
. (10.54)

Now use the Leibnitz Theorem:

∂

∂t2

(
eiS/~ψ (x1, t1)

)
= ψ (x1, t1)

∂

∂t2
eiS/~ + e

iS/~ ∂ψ

∂t2
(x1, t1) . (10.55)

Since ψ(x1, t1) is not a function of t2:

∂ψ

∂t2
ψ (x1, t1) = 0 (10.56)

and
∂

∂t2
eiS/~ =

i

~
∂S

∂t2
· eiS/~. (10.57)

Thus:
∂

∂t2
ψ (x2, t2) =

i

~
∂S

∂t2
eiS/~ψ (x1, t1) . (10.58)

Finally use Eq. 10.53 to obtain the Schrödinger equation in time dependent
form [48]:

∂

∂t
ψ =

i

~
∂S

∂t
ψ. (10.59)

This is not strictly a wave equation because a wave equation in mathematics
contains second derivatives, but it is the famous equation of non-relativistic
quantum mechanics. The more familiar form of the Schrödinger equation is
obtained by using [48]:

E = −∂S
∂t

(10.60)

where E is the total energy, the sum of kinetic and potential energy. So Eq.
10.59 becomes:

i~
∂ψ

∂t
= Eψ. (10.61)

Finally define the operator:

H = i~
∂

∂t
(10.62)

to obtain the familiar:
Hψ = Eψ (10.63)
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It is seen that the Schrödinger equation is a causal differential equation and
as such cannot be interpreted as an expression of something that is acausal or
unknowable. Using the operator 10.62 for energy it is seen that the Schrödinger
equation is mathematically the same as:

[H, t]ψ = i~ψ (10.64)

where the time t multiplies the function ψ. Eq. 10.64 is an example of a
Heisenberg commutator equation in the non-relativistic quantum limit. There is
no more meaning to Eq. 10.64 than Eq. 10.63 because Eq. 10.64 is a restatement
of Eq. 10.63 and thus contains the same mathematical information. This is the
causal deterministic view of Einstein, de Broglie, Schrödinger, Bohm, Vigier
and followers. The Copenhagen interpretation of Eq. 10.64 is that if t is known
exactly, E is unknowable, and vice versa. This is the view of Bohr, Heisenberg
and followers.

This non-relativistic analysis can be extended to ECE theory [1]– [38] by
using the equation for the propagation of the tetrad wave function:

qa
µ (xµ) = eiS(xµ)/~qa

µ (0) (10.65)

where S(xµ) is defined by Eqs. 10.8 and 10.9.
Differentiate Eq. 10.65 to obtain:

∂νqa
µS (xµ) =

i

~
∂νSeiS/~qa

µ (0) . (10.66)

The second term disappears in analogy with the derivation of Eq. 10.59 from
Eq. 10.53. The following definitions are used:

∂ν :=
(

1
c

∂

∂t1
,
∂

∂X1
,
∂

∂Y1
,
∂

∂Z1

)
, (10.67)

qa
µ(0) := qa

µ (ct2, X2, Y2, Z2) , (10.68)

and:
∂νqa

µ(0) = 0. (10.69)

Eq. 10.66 is the generally covariant Schrödinger equation in which the wave
function is the tetrad. Now differentiate Eq. 10.66 once more:

∂ν

(
∂νqa

µ

)
=
i

~
∂ν

(
(∂νS) qa

µ

)
(10.70)

to obtain the following generally covariant wave equation:

�qa
µ =

i

~

(
�S +

i

~
∂νS∂νS

)
qa

µ = Rqa
µ . (10.71)

The second equality in Eq. 10.71 follows from the ECE Lemma. Therefore we
obtain the following expression for the scalar curvature in terms of the action:

R =
i

~

(
�S +

1
~
∂νS∂νS

)
(10.72)
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If Eq. 10.39 is not used, i.e. if it is not assumed a priori that S0 is ~, then Eq.
10.6 becomes:

qa
µ = exp(

iS

S0
)qa

µ(0) (10.73)

and the scalar curvature can be expressed as:

R =
i

S0

(
�S +

i

S0
∂νS∂νS

)
. (10.74)

In the limit of the Dirac equation [1]– [38]:

R→ −
(mc

~

)2

(10.75)

and we obtain the wave form of the Dirac equation:(
� +

m2c2

~2

)
qa

µ = 0. (10.76)

This limit may be used to identify the Planck constant as:

m2c2

~2
= − i

S0

(
�S +

i

S0
∂νS∂νS

)
(10.77)

where
S0 → ~. (10.78)

The standard model does not consider the general covariance of the Planck
constant, because in the standard model quantum mechanics is not unified with
general relativity. The Hamilton and Fermat principles are classical, i.e. non-
relativistic. In volume 2 of ref. (1) it was suggested that the key quantity
to consider is the density of action, not the action itself. So there may be
experimentally observable departures from quantum mechanics when general
covariance is properly considered. These may show up in hyperfine spectral
structure.

10.4 The Aspect Experiment And Quantum En-
tanglement

In this section the Aspect experiment [49] and quantum entanglement [50] are
developed as two examples of how ECE wave mechanics is applied to data.
In the Aspect experiment two photons are emitted at the same time and are
circularly polarized in opposite senses. The photons travel along different paths
and filters define their orientations a and b, subtending between them the angle
θ. Therefore a circularly polarized tetrad wave:

A(1) =
A(0)

√
2

(i− ij) eiφ (10.79)

is split into

A(1)
a =

A(0)

√
2

ieiφ (10.80)
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and

A(1)
b = − iA

(0)

√
2

jeiφ (10.81)

if a and b are at right angles. A photo-multiplier tube detects either A(1)
a or

A(1)
b, one detector for A(1)

a and one for A(1)
b. In the detector, +1 is registered

for A(1)
a and −1 for. The ±1 signals are collected on a coincidence counter.

This procedure occurs for both the right circularly polarized tetrad wave:

A(1)
R =

A(0)

√
2

(i− ij) eiφ (10.82)

and the left circularly polarized tetrad wave:

A(1)
L =

A(0)

√
2

(i + ij) eiφ. (10.83)

Therefore there are A(1)
Ra, A(1)

Rb, A
(1)

La and A(1)
Lb. The components A(1)

Ra

and A(1)
La both register a +1 and A(1)

Rb and A(1)
Lb both register a −1.

This coincidence counter only accepts results if the time delay between re-
ceiving signals from the photo-multiplier tubes on sides A and B is less than
a certain interval t. The latter is half the time it takes for a signal c to travel
from one filter to the other. If an event occurs within the interval t the result
on side A (+1 or −1) is multiplied by the result from side B and the average
value found from repeated measurements. The average value is defined by the
expectation value, which is the sum of all the resulting values multiplied by the
probability for that value:

〈P 〉 = P++ − P+− − P−+ + P−− (10.84)

The expectation value is a function of the filter orientation, or the angle θ
between a and b. Here P++ is the probability that both detectors registered a+
and P−− that both detectors registered a−. These probabilities are measured
experimentally by recording the number of counts of a particular type and
dividing this record by the total number of counts recorded. For example, P−+

is the number of times the left detector registered −1 at the same time as the
right detector registered +1. The ”same time” means ”within the t interval”.

Within the factor A(0) the quantities A(1)
Ra, A(1)

Rb, A(1)
La and A(1)

Lb are
tetrads, or wave functions. So the Aspect experiment investigates the statistical
properties of tetrad waves. By statistical is meant statistical averaging of causal
wave-functions, which within A(0) are waves of spinning space-time. In generally
covariant wave mechanics (ECE theory) the Aspect experiment is considered as
follows. One filter detects linear polarization along the a direction, the other
along the b direction. The expectation value is [49]:

Ω = cos 2θ (10.85)

and this is what is measured experimentally in the Aspect experiment. Thus
ECE theory must be used to explain Eq. 10.85, the experimental result. From
Eq. 10.65 the basic equation to be used is:

qa
µ (t1, r1) = eiS/~qa

µ (t2, r2) . (10.86)
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Now use the identity:
cos 2θ = Re

(
eiθe2iθe−iθ

)
(10.87)

and denote:
ψ = eiθ, ψ∗ = e−iθ, (10.88)

Ω = e2iθ (10.89)

It is found that:
cos 2θ = ψΩψ∗ (10.90)

This equation is similar to the definition [48] of expectation value in quantum
mechanics:

〈Ω〉 =
∫
ψ∗ΩψdV/

∫
ψ∗ψdV (10.91)

where V is a volume. Usually in quantum mechanics [48] the denominator in
Eq. 10.91 is normalized to unity, so:∫

ψ∗ψdV = 1. (10.92)

Therefore cos 2θ/V in Eq. 10.90 is the density of expectation value. As in
lagrangian dynamics and relativity theory it is the density that is the key quan-
tity. In Eq. 10.91 the density of expectation value is a weighted sum of the
eigenvalues of Ω [48]. The wave function is expanded as the sum:

ψ =
∑

n

Cnψn (10.93)

where
Ωψn = ωnψn. (10.94)

In the simple example of the identity 10.87 the wave function is:

ψ = eiθ (10.95)

and the eigen-operator Ω operates on the wave-function ψ:

Ω = e2iθ (10.96)

So (cos 2θ) /V is the density of the expectation value of Ω. A light wave is
described by Eq. 10.50:

ψ (P2) = exp (2πi (x2 − x1) /λ)ψ (P1) . (10.97)

Now identify the angle θ as:

θ = π (x2 − x1) /λ (10.98)

to obtain Eq. 10.50 in the form:

ψ (P2) = e2iθψ (P1) . (10.99)

This is always true for any light wave. Quantization into photons occurs when
the angle in Eq. 10.9 is further identified as:

θ = S/~. (10.100)
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In the special case:
ψ (P1) = ψ∗ (P2) (10.101)

we recover:
cos 2θ = Re

(
ψe2iθψ∗

)
= Re (ψψ) . (10.102)

Finally apply this analysis to the tetrad propagation equation 10.86:

Aa
µ = eiS/~Aa

µ (0) (10.103)

which within Aa
µ describes the propagation of the electromagnetic potential

and photon simultaneously. The Planck Einstein and de Broglie equations are
recovered by identifying the electromagnetic phase with quantized action:

S = ~ (ωt− κZ) . (10.104)

Eq. 10.104 gives:
En = ~ω, p = ~κ, (10.105)

which are the archetypical photon equations. In these equations ~ is a universal
constant for the free electromagnetic field. However, as argued in Section 10.3,
when light interacts strongly with gravity, ~ must be generally covariant. The
root cause of photons in the free electromagnetic field is the universal constancy
of the action ~. This is the minimum action or angular momentum of the
electromagnetic field free from gravity.

In the ECE description of the Aspect experiment the wave and particle
co-exist, they are parts of the ECE wave equation. In the Copenhagen inter-
pretation the wave and particle are not simultaneously knowable. The Aspect
experiment does not distinguish between these two points of view, the exper-
iment is meant to test the Bell inequalities [49] and hidden variable theory.
However, contemporary experiments [42]– [45] refute Bohr Heisenberg indeter-
minacy while supporting relativity to very high precision as described in the
introduction. Young interferometry is an example of such experiments [50].
Indeterminacy is beginning to be supplanted [50] by the concept of quantum
entanglement. To end this section entanglement is briefly described with ECE
theory.

Quantum entanglement is the appellation originally given by Schrödinger
to the wave function of two interacting systems. In ECE theory these are two
different tetrads, qa

µ and qb
ν . These tetrads are governed by the ECE wave

equations:
�qa

µ = R1q
a
µ (10.106)

and
�qb

ν = R2q
b
ν . (10.107)

The entangled state is defined by the tensor product [1]:

gab
µν = qa

µq
b
ν (10.108)

which obeys the ECE wave equation:

�
(
qa

µq
b
ν

)
= R

(
qa

µq
b
ν

)
. (10.109)

The entangled state in ECE theory is therefore a tensor valued metric [1]– [38]:

gab
µν (entangled) = qa

µq
b
ν . (10.110)
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An entangled quantum state is therefore a space-time property. The eigen-
function gab

µν can always be written [1]– [38] as the sum of a symmetric and
antisymmetric components. The symmetric component is:

gµν = qa
µq

b
νηab (10.111)

where ηab is the Minkowski metric of the tangent space-time of Cartan geometry,
and obeys the wave equation:

�gµν = Rsgµν . (10.112)

The antisymmetric component is:

gc
µν = qa

µ ∧ qb
ν (10.113)

and obeys the wave equation:

�gc
µν = RAg

c
µν . (10.114)

For pure rotational motion [1]– [38] the tetrad is dual as follows to the spin
connection:

ωa
b = −κ

2
εabcg

c (10.115)

where κ is a wave-number magnitude (inverse meters). Therefore gc
µν is pro-

portional to the spin connection term ωa
b ∧ qb of the Cartan torsion defined

by:
T a = d ∧ qa + ωa

b ∧ qb (10.116)

If for example we consider the spin-spin interaction of two different spinning
particles, (e.g. two electrons in an atom), a net Cartan torsion is set up in
general. Since ωa

b ∧ qb cannot exist without the d ∧ qa term the most general
spin-spin interaction is described by the wave equation:

�T a = V T a (10.117)

where V must have the units of volume. There is local spin-spin interaction,
defined by the d ∧ qa term, and non-local spin-spin interaction, described by
the ωa

b ∧ qb term. Spin - spin interaction is observed [48] in fine and hyperfine
spectroscopy and in ESR, NMR and so forth. So these spectra are manifestations
of Cartan torsion. In optics and electrodynamics Eq. 10.116 becomes:

F a = d ∧Aa + ωa
b ∧Ab (10.118)

using the ansatzen:
Aa = A(0)qa, (10.119)

F a = A(0)T a, (10.120)

and Eq. 10.117 becomes:
�F a = V F a (10.121)

where the field F a has become a wave function. There may be entanglement
between different photons. One photon is described by the local term d∧Aa and
the non-local term ωa

b ∧ Ab. In analogy with the Aharonov Bohm effects [1]–
[38] the non-local part of the photon, ωa

b ∧Aa, can be observed experimentally
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in regions where the local part of the photon, d ∧ Aa, does not exist. So when
light (i.e. d ∧A) travels through one aperture of a Young interferometer [50] it
is always accompanied in ECE theory by its non-local ωa

b ∧ Ab, even on a one
photon level. This is precisely what is observed in contemporary experiments
[50], where one photon appears to ”interfere with itself”. The ”particle” is
not localized, it is always accompanied by the wave, and both are observed
simultaneously. Thus ECE theory and relativity are preferred experimentally
to indeterminacy. The extra ingredient given by ECE theory is the non local
term ωa

b ∧Ab due to the spin connection.
The archetypical entanglement effect is when one particle affects another

when they are separated by a large distance, for example two spins. In ECE
theory this is another experimental example of a non-local effect due to the spin
connection. The influence of one spin on another is due to the spinning of space-
time itself, and such experiments prove that space-time spins. In ECE theory,
as in all theories of relativity, c is a universal constant, but as discussed in
Section 10.5, the phase velocity v of a tetrad may become much greater than c.
Entanglement proves that ”information” can be transmitted to a remote region.
In ECE theory this information is transmitted by the spin connection while c
remains constant. So the information is not being transmitted by the speed
of light c. It is transmitted by spinning space-time. The concept of spinning
space-time does not exist in the standard model, in which quantum mechanics
is almost always developed in a flat space-time without spin, the Minkowski
space-time of special relativity. So in the standard model effects such as single
photon interferometry, quantum entanglement and the Aharonov Bohm variety
are impossible to understand self-consistently. An understanding needs a unified
field theory which is generally covariant [1]– [38]. Also a single particle other
than a photon (for example an electron), can also exhibit Young interferometry.
In ECE theory this is understood in the same way, a particle and wave cannot
be separated, they are different aspects of ECE space-time. So we arrive at the
principle of wave particle indistinguishability, and introduce the terminology
”wave-particle”. In analogy, relativity unified space and time and introduced
the terminology ”space-time”.

10.5 Phase Velocity Of ECE Waves

To illustrate the ability of ECE theory to produce phase velocity v >> c consider
the homogeneous ECE field equation [1]– [38]:

∇×Ea +
∂Ba

∂t
= µ0j̃a. (10.122)

This can be expressed as:

∇× (εrEa) +
∂

∂t

(
1
µr

Ba

)
= 0. (10.123)

Here Ea is the electric field strength (volt m−1), Ba is magnetic flux density
(tesla), µ0 is the vacuum permeability and j̃a is the homogeneous current. In
Eq. 10.123:

µr = µ/µ0, ε = ε/ε0 (10.124)
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where µr is the relative permeability of ECE space-time, µ is its absolute per-
meability, εr is its relative permittivity and ε is its absolute permittivity. Here
µ0 and ε0 are the vacuum permeability and permittivity respectively. The re-
fractive index of ECE space-time is

n2 = µrεr. (10.125)

The phase velocity of a wave in ECE space-time is defined as:

v =
c

n2
=

c

µrεr
. (10.126)

The relative permeability and permittivity are complex quantities in general:

µr = µ′r + iµ′′r (10.127)

εr = ε′r + iε′′r (10.128)
so

v =
c

x+ iy
(10.129)

where:
x = µ′rε

′
r − µ′′r ε

′′
r , (10.130)

y = µ′rε
′′
r + µ′′r ε

′
r. (10.131)

So the real-valued and physical part of the phase velocity is:

Re(v) =
x

(x2 − y2)
c. (10.132)

It is seen that for finite constant c:

Re(v) →∞ (10.133)

when
x2 = y2, x = ±y. (10.134)

If x = y then:
µ′rε

′
r − µ′′r ε

′′
r = µ′rε

′′
r + µ′′r ε

′
r. (10.135)

If x = −y then:
µ′rε

′
r − µ′′r ε

′′
r = − (µ′rε

′′
r + µ′′r ε

′
r) . (10.136)

The phase velocity v is that of the generally covariant unified field. The in-
teraction with gravitation occurs through the permittivity and permeability of
ECE space-time. It is this interaction that results in µ and ε of ECE space-time
being different from the vacuum values. This is confirmed experimentally in
the Eddington effect, the bending of light rays by the sun’s mass, and in other
cosmological effects of gravitational lensing. ECE theory is the first complete
theory of this famous effect. When electromagnetism is independent of gravi-
tation Eq. 10.122 becomes the Faraday law of induction for each polarization
index a. As we have seen, wave mechanics is unified with general relativity
through the ECE wave equation 10.1. The phase velocity of ECE waves can be
much greater than c as illustrated here. The constant c itself remains a universal
constant as required in any theory of relativity.
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