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Abstract

The Coulomb law is derived from general relativity applied to classical electro-
dynamics within Einstein Cartan Evans (ECE) unified field theory. The radial
component of the spin connection is modeled to be of the form 1/r, where r is
the radial component of the spherical polar coordinate system. The Coulomb
potential so obtained may be amplified by space-time resonance. If this resonant
Coulomb potential is used in a computation of the radial orbitals of the H atom,
for example, the latter ionizes if the kinetic energy inputted from space-time at
resonance exceeds the ionization potential energy (13.6 eV). The free electrons
so released may be used as a novel source of electric power.

Keywords: Einstein Cartan Evans (ECE) field theory, resonant Coulomb law,
radial orbitals of the H atom, free electrons from resonance, source of electric
power from space-time.

7.1 Introduction

The theory of general relativity was developed for the gravitational field, as is
well known, and has recently been tested in the solar system [1] to one part in one
hundred thousand with the NASA Cassini experiments. It is therefore logical
to extend general relativity to other areas of physics, notably classical electro-
dynamics, thereby developing a generally covariant unified field theory [2]– [18]
for the natural, engineering and life sciences. In the standard model, classical
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7.1. INTRODUCTION

electrodynamics is a theory of special relativity - the Maxwell Heaviside (MH)
field theory [19]. The well known Coulomb law is part of the MH field theory
and is usually regarded as one of the most precise laws in physics [19], [20].
The Coulomb law is the basis for the quantum theory of atomic and molecular
spectra for example, and is used in many of the advanced computational tech-
niques employed in this area of physics and chemistry. When the MH theory
is extended from special to general relativity [2]– [18] with the Einstein Cartan
Evans (ECE) theory, important new features develop in all the basic laws of clas-
sical electrodynamics, including the Coulomb law. These features emanate from
the spin connection of ECE space-time. The Minkowski space-time of the MH
theory is the well known flat space-time [19] of special relativity, but ECE space-
time is characterized by the presence of both curvature and torsion [2]– [18]. In
general relativity (ECE theory) the electromagnetic field is spinning space-time
and the gravitational field is curving space-time. The spinning and curving may
interact through standard Cartan geometry [21] and therefore the electromag-
netic and gravitational fields may interact as verified experimentally in the well
known bending of light by gravity. This phenomenon has been observed with
great precision in the recent NASA Cassini experiments. ECE theory has been
accepted [22] as the first classical explanation of this phenomenon [2]– [18]. The
original well known inference of this effect by Einstein and others is based on a
semi-classical approach, where the photon mass gravitates with the mass of the
sun according to the Einstein Hilbert (EH) field theory of gravitation published
in 1916. A classical explanation was not possible prior to ECE theory because
standard model electrodynamics is special relativity un-unified with gravita-
tional general relativity. ECE theory [2]– [18] provides a relatively simple and
practical unified field theory based on the fundamental and well known princi-
ple of general covariance [21]. Unification occurs on both classical and quantum
levels, and so ECE theory has been accepted as unifying general relativity with
quantum mechanics, a major aim of physics throughout the twentieth century.

In Section 7.2 the Coulomb law is developed within the context of ECE
field theory using a simple model of the spin connection, which is assumed to
have a 1/r radial dependence, where (r, θ, φ) is the spherical polar coordinate
system [23]. The result is that the Poisson equation is extended to a second
order differential equation through which the scalar potential may be ampli-
fied at resonance according to well known mathematical principles [24]. This
capacity for resonance is due to the presence of the spin connection of ECE
space-time itself. Resonance of this type is not possible in a flat space-time,
because in a flat space-time there is no spin connection. The latter indicates
that the electromagnetic field is spinning space-time. The latter inference is
indicated independently by several other phenomena [2]– [18], notably the mag-
netization of matter by electromagnetic radiation (the inverse Faraday effect)
and the presence of the ECE spin field (B(3) [25]) in all types of electromagnetic
radiation. The inverse Faraday effect is magnetization due to the B(3) spin field.
The latter originates [2]– [18] in the spin connection, which works its way into
other observable phenomena throughout the whole of the natural, engineering
and life sciences.

In Section 7.3 some graphical results are given from the resonant Coulomb
law, and it is shown how this produces free electrons from the H atom by ionizing
the latter with kinetic energy inputted from space-time at resonance. The H
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CHAPTER 7. SPACE-TIME RESONANCE IN THE COULOMB LAW

atom is used here as a simple model material. The release of free electrons
at space-time resonance has been observed recently [26] and shown to be a
repeatable phenomenon. The material and circuit designs used in this series of
experiments [26] are much more complicated than H, but the latter serves as a
model to illustrate the theoretical principles at work - those of general relativity
applied to classical electrodynamics with ECE theory.

7.2 The ECE resonance Coulomb Law

The law is given [2]– [18] from the first Cartan structure equation:

T a = d ∧ qa + ωa
b ∧ qb (7.1)

and the first Bianchi identity:

d ∧ T a + ωa
b ∧ T b = Ra

b ∧ qb (7.2)

with the ECE Ansatz:

Aa = A(0)qa, F a = A(0)T a (7.3)

Here T a is the torsion form, Ra
b is the Riemann or curvature form, qa is the

tetrad form, is the spin connection form, Aa is the electromagnetic potential
form, cA(0) is the primordial voltage, and F a is the electromagnetic field form.
The Ansatz was first proposed by Cartan in well known correspondence with
Einstein in the first part of the twentieth century, but was not developed into
ECE theory until the spring of 2003 [2]– [18]. Eqs. (7.1) to (7.3) lead to [2]– [18]:

Ea = −∂A
a

∂t
−∇φa − cω0a

bA
b + φbωa

b (7.4)

∇ ·Ea = cµ0J̃
0a (7.5)

in vector notation. Here Ea is the electric field strength (volts per meter), µ0

Is the vacuum S.I. permeability, J̃oa is the time-like component of the inhomo-
geneous four-current of ECE theory, c is the vacuum speed of light, Aa is the
vector potential, φb is the scalar potential, ω0a

b is the time-like part of the spin
connection four-vector, and ω̃a

b is the space-like part of the spin connection
four-vector. The indices a and b originate in Cartan geometry [2]– [18], [21]
and are the indices of the tangent space-time at a point P in the base manifold.
These indices indicate polarization states of electromagnetic radiation in ECE
theory [2]– [18]. Eq.(7.5) may be written for each index a as:

∇ ·E =
ρ

ε0
(7.6)

where ρ is the charge density and where ε0 is the S.I. vacuum permittivity.
Therefore for each index a, Eq.(7.5) has the same mathematical structure as the
standard model Coulomb law [19], [20]. However, the electric field in ECE theory
must always be defined by Eq.(7.4), which always involves the spin connection.
The electric field is part of spinning space-time.

117



7.2. THE ECE RESONANCE COULOMB LAW

If attention is restricted to the scalar potential, then for each index a,
Eq.(7.4) is:

E = −∇φ+ φbωb (7.7)

Here φb is interpreted as a scalar quantity indexed or labeled by b, indicating
that the scalar potential applies to this state of polarization of electromagnetic
radiation. For a given b index, Eq.(7.7) is:

E = −∇φ+ φω (7.8)

Summation over repeated b indices in Eq.(7.7) is implied (Einstein convention)
but for the sake of simplicity it has been assumed in Eq.(7.8) that there is
only one index and one state of polarization. Therefore we have reduced the
complicated Eq.(7.8) to its simplest form (7.4). The result is that the familiar
definition of the electric field in the standard model Coulomb law:

E = −∇φ (7.9)

is supplemented by a term in the vector part of the spin connection, the vector
ω. Eqs.(7.6) and (7.8) give the second order differential equation:

∇2φ−∇ · (φω) = − ρ

ε0
(7.10)

which compares with the standard model Poisson equation [19], [20]:

∇2φ = − ρ

ε0
(7.11)

Eq.(7.10) is an equation of general relativity. Eq.(7.11) is an equation of spe-
cial relativity. The mathematical properties of Eq.(7.10) include the ability to
give resonance, whereas Eq.(7.11) has no resonance solutions. This is a key
difference. Resonance is the key to the production of free electrons from ECE
space-time, providing a new source of electric power for engineering.

The spin connection vector in Cartesian and spherical polar coordinates is:

ω = ωxi + ωyj + ωzk

= ωrer + ωφeφ + ωθeθ

(7.12)

where ωr is the radial component of ω. If the latter is assumed to be purely
radial, for simplicity of argument, then:

ω = ωrer (7.13)

and in spherical polar coordinates [23]:

ω ·∇φ = ωr
∂φ

∂r
(7.14)

φ∇ · ω =
φ

r2
∂

∂r

(
r2ωr

)
(7.15)

∇2φ =
1
r2

∂

∂r

(
r2
∂φ

∂r

)
=
∂2φ

∂r2
+

2
r

∂φ

∂r
(7.16)
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The dimensions of ω are inverse meters 2-18, so the simplest model of the vector
spin connection is:

ωr =
A

r
(7.17)

where A is a dimensionless scaling factor. Eqs.(7.13) to (7.17) give the result:

∂2φ

∂r2
+ (2−A)

1
r

∂φ

∂r
− Aφ

r2
= − ρ

ε0
(7.18)

in spherical polar coordinates. Eq.(7.18) contains second and first order partial
derivatives in the scalar potential φ. In the special case

A = 2 (7.19)

Eq.(7.18) becomes:
∂2φ

∂r2
− 2φ
r2

= − ρ

ε0
(7.20)

in which the second term on the left hand side is a REPULSION term. This
means that the familiar Coulomb attraction between a proton and an elec-
tron in an H atom develops a repulsive component due to the presence of the
spin connection vector. Eq.(7.18) has a similar structure to the well known
one-dimensional Schrödinger equation for motion in an effective potential with
repulsive centrifugal term [20] in the H atom. So the spin connection may be
interpreted similarly. If the repulsion term in Eq.(7.20) becomes strong enough,
the H atom ionizes, releasing a free electron. Eq.(7.18) is similar to the well-
known [24] class of linear inhomogeneous differential equations that give reso-
nance - the damped driven oscillator equations. Eq.(7.20) is a special case - the
undamped driven oscillator. In order to induce resonance, the charge density
rho must be initially oscillatory [24]. In the H atom model we are considering
the source of this small original oscillation may be considered to be zitterbe-
wegung (jitterbugging) from quantum electrodynamics [20]. In a molecule it
could be a rotational frequency or vibrational bond frequency. At space-time
resonance the initially small oscillation is greatly amplified [2]– [18], [24] and
kinetic energy is absorbed into the atom or molecule from ECE space-time. If
this energy is greater than the ionization potential energy of H (13.6 eV) the
electron breaks free of the proton and may be used in a circuit to produce
electric power from space-time through the intermediacy of the H atom. This
concept may be generalized to any material which contains electrons which are
easily released by ionization. The skill in material design revolves around this
need. The engineering skill consists in devising a design to induce the resonance
and this has been accomplished recently in a repeatable manner [26]. The out-
put power in such experiments [26] may exceed the input power by as much
as a factor of one hundred thousand, an amplification that illustrates dramat-
ically the resonance of the spin connection in classical electrodynamics. Care
has been taken to ensure that this experiment is repeatable and the apparatus
has been observed independently [26] in different laboratories. Every effort has
been made to eliminate artifact, and reproducible amplification by five orders of
magnitude is unlikely to be artifact. The standard model (MH theory) has no
explanation for this phenomenon, even on a qualitative level. Its explanation
in general relativity (ECE theory) relies on resonating the spin connection as
described already.
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7.2. THE ECE RESONANCE COULOMB LAW

In summary of this section therefore the Poisson equation of the standard
model (Eq.(7.11)) is modified in the simplest instance to the following ECE
equation of general relativity:

∂2φ

∂r2
=

2φ
r2
− ρ

ε0
(7.21)

introducing a repulsive term:

ρeff = 2ε0
φ

r2
(7.22)

If the charge density ρ is very small, Eq.(7.21) takes on the approximate math-
ematical form:

∂2φ

∂r2
∼ 2φ
r2

(7.23)

which has an analytical solution:

φ ∼ β

r
+ αr2 (7.24)

where α and β are constants. When r is very small, the potential φ becomes
very large and a large amount of POSITIVE potential energy may be inputted
into the H atom from the spin connection, depending on the value of β. If:

β ≥ e

4πε0
(7.25)

then the positive repulsion potential becomes equal to or greater than the neg-
ative attraction potential, releasing the electron from the proton. The standard
model inverse square Coulomb law is very precise in the vast majority of exper-
iments in macroscopic classical electrodynamics [19] but the recent experiments
carried out in ref. [26] indicate that it does not hold in general.

The ECE theory reduces straightforwardly to the standard Coulomb law as
follows. In ECE theory the electric field is defined in the simplest instance by:

E = −∇φ+ φω (7.26)

and in the standard Coulomb law it is defined by:

E = −∇φ (7.27)

Therefore if:
∇φ = −φω (7.28)

the mathematical form of the standard Coulomb law is obtained:

E := −2∇φ (7.29)

This simply means that the scalar potential is defined by:

Φ := 2φ (7.30)

This makes no difference to the observable force (inverse square law). If:

Φ :=
e

4φε0Z
(7.31)
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CHAPTER 7. SPACE-TIME RESONANCE IN THE COULOMB LAW

and

∇Φ = −Φω (7.32)

then:

ωA =
1
Z

(7.33)

The important conclusion is reached that a spin connection of the type (7.33)
is ALWAYS observed in the Coulomb law, which becomes a law of general
relativity as required by objectivity in physics. Therefore any experimental
departure from the inverse square Coulomb law would indicate that the spin
connection is no longer given by Eq.(7.33)In general relativity (ECE theory)
the electric field must always be defined according to Eq.(7.26) and the vast
majority of experimental data have confirmed the inverse square law of Coulomb
for over two hundred years. In general relativity this means that the data show
that the spin connection must be of the form (7.33) experimentally. This type of
spin connection, conversely, gives the inverse square law of Coulomb. Eq.(7.28)
is similar to the operator equivalence of quantum mechanics, and means that:

ω → −∇ (7.34)

The operator equivalence is:

p→ −i~∇ (7.35)

Therefore in general relativity the electric field can be defined equivalently in
two ways:

E = −∇Φ = Φω (7.36)

and this is the fundamental definition of the electric field in general relativity.
These considerations confirm that ECE theory is correct to very high precision,
and give a simple meaning to the spin connection. The result of general rel-
ativity, Eq.(7.26), is preferred to the result of special relativity, Eq.(7.27), on
several grounds, notably that other aspects of electrodynamics such as the in-
verse Faraday effect and Eddington effect require a generally covariant unified
field theory for their objective interpretation on the classical level.

Dramatically new results such as those by the Mexican group are also ac-
counted for by ECE theory by considerations of resonance as in previous work.

It is significant that spin connections of the type (7.33) also occur as Christof-
fel connections of the Schwarzschild metric of spherically symmetric space-time.
These are well known to indicate a dynamic space-time. Electrodynamics is also
now known to be a phenomenon of dynamic space-time, and similarly for the
natural, engineering and life sciences. The two simplest Christoffel connections
in a spherically symmetric space-time are [2]– [18]:

Γ2
12 = Γ3

13 =
1
r

(7.37)

and these are similar to the connection (7.33) of the Coulomb law in ECE
theory. For any spherically symmetric space-time the non-vanishing Christoffel
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connections are:

Γ2
12 = Γ3

13 =
1
r
, Γ0

00 =
1
c

∂α

∂t
, Γ0

01 =
∂α

∂X
, Γ1

01 =
1
c

∂B

∂t
,

Γ1
11 =

∂β

∂X
, Γ0

11 = e2(β−α) 1
c

∂β

∂t
, Γ1

22 = −re−2β ,

Γ1
33 = Γ2

33 = Γ3
23 = f (θ) ,

ds2 = −e2αdt2 + e2βdr2 + r2dΩ2

(7.38)

In the particular case of the Schwarzschild metric [2]– [18]:

e2α =
(

1− 2GM
c2r

)
, (7.39)

e2β =
(

1− 2GM
c2r

)−1

, (7.40)

and in spherical polar coordinates:

Γ0
01 = ∂1α, Γ0

11 = e2(β−α)∂0β,

Γ1
00 = e2(α−β)∂1α, Γ1

11 = ∂1β.
(7.41)

However, the ECE Coulomb law is derived from the Cartan torsion, while the
Christoffel connections are for the Cartan curvature in the absence of Cartan
torsion.

These considerations of the Coulomb law of generally covariant electro-
statics can be extended as follows to the generally covariant Ampère Law of
magneto-statics. In ECE theory the magnetic field is:

Ba = ∇×Aa − ωa
b ×Ab (7.42)

and the Ampère Law of magneto-statics takes on a generally covariant form as
follows:

∇×Ba =
µ0

c
J̃a (7.43)

The magnetic field in general relativity must always be defined by Eq.(7.42) with
a non-zero spin connection. The latter is always present in general relativity.
In magneto-statics we are dealing with rotational motion, so Eq.(7.42) may be
written as:

Ba = ∇×Aa + gAb ×Ac (7.44)

where the parameter g is defined as [2]– [18]:

g =
κ

A(0)
(7.45)

For rotational motion the spin connection is dual to the tetrad if it is assumed
that the electromagnetic and gravitational fields are independent. In Eq.(7.45)
A(0) is a magnitude and κ has the units of inverse meters. Eq.(7.44) is therefore:

Ba = ∇×Aa + ωb ×Ac (7.46)
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where
ωb =

κ

A(0)
Ab (7.47)

If gravitation and electromagnetism are inter-dependent, the general equation
(7.42) must be used, and it cannot be assumed that ωa

b is dual to Ac.
If it is assumed that:

∇×Aa = ωb ×Ac (7.48)

then:
Ba = 2∇×Aa (7.49)

which is the standard model result for each a. The potential is:

Amh := 2AECE (7.50)

and so:
B = ∇×AMH (7.51)

as is usual in the standard model [2]– [18]. So ECE reduces to the standard
model of magneto-statics provided the spin connection obeys Eq.(7.48). This
is an important result, because in the vast majority of experiments since the
eighteenth century both the Coulomb and Ampère laws hold to very high ac-
curacy. So ECE theory must be able to reduce to these well known results. So
both laws are now understood to be very precise laws of general relativity (ECE
theory) and not special relativity (Maxwell Heaviside theory). The key advance
is that the ECE theory is a generally covariant unified field theory that enables
electro-statics and magneto-statics to be unified with all other fields, notably
the gravitational field.

The indices a, b and c in Eq.(7.42) originate [2]– [18] in the tangent space of
Cartan geometry, and can be defined in the complex circular basis:

a, b, c = (1) , (2) , (3) (7.52)

in which the magnetic field is:

B(1)∗ = ∇×A(1)∗ − iω(2) ×A(3)

B(2)∗ = ∇×A(2)∗ − iω(3) ×A(1)

B(3)∗ = ∇×A(3)∗ − iω(1) ×A(2)

(7.53)

The complex circular basis is defined by the unit vectors:

e(1) =
1√
2

(i− ij)

e(2) =
1√
2

(i + ij)

e(3) = k

(7.54)

with O(3) symmetry:
e(1) × e(2) = ie(3)∗

e(2) × e(3) = ie(1)∗

e(3) × e(1) = ie(2)∗

(7.55)
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7.2. THE ECE RESONANCE COULOMB LAW

Here i, j and k are the Cartesian unit vectors. The following are self-consisted
vector potential solutions of Eq.(7.53):

A(1) =
A(0)

√
2

(i− ij) e−iκZ (7.56)

A(2) = A(1)∗ =
A(0)

√
2

(i + ij) eiκZ (7.57)

A(3) = A(0)k (7.58)

with vector spin connections:

ω(1) =
ω(0)

√
2

(i− ij) e−iκZ , (7.59)

ω(2) =
ω(0)

√
2

(i + ij) eiκZ , (7.60)

ω(3) = ω(0)k (7.61)

Using the de Moivre Theorem:

e−iκZ = cos (κZ)− i sin (κZ)
eiκZ = cos (κZ) + i sin (κZ) (7.62)

Eq.(7.56) has a real and physical component:

RealA(1) =
A(0)

√
2

(cos (κZ) i + sin (κZ) j) (7.63)

which is a rotating potential with phase angle:

θ = κZ (7.64)

It is seen that at θ = 0, A(0) is in the i axis, and if θ = π/2, A(1) is in the j
axis, and so has rotated by 90o. With these definitions it is seen that:

∇×A(1)∗ = −iω(2) ×A(3)

∇×A(2)∗ = −iω(3) ×A(1)
(7.65)

so the (1) and (2) magnetic fields are:

B(1) = 2∇×A(1),
B(2) = 2∇×A(2),

(7.66)

having the same mathematical form as the standard model. However, general
relativity (ECE theory) gives a new result:

B(3)∗ = iω(1) ×A(2) (7.67)

which does not occur in special relativity. Eq.(7.65) may be written as:

B = ∇×AMH (7.68)
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From Eq.(7.64) the magnitude of the spin connection is the wave-number:

ω(0) = κ (7.69)

with units of inverse meters.
It is important to note the existence of the B(3) field in general relativity,

Eq.(7.66). In electrodynamics [2]– [18] this is the ECE spin field of electro-
magnetic radiation. In magneto-statics, to which the Ampère law applies, a
magnetic field may also be defined through the spin connection using Eq.(7.66).
Using Eqs.(7.56) to (7.60) the field in Eq.(7.66) is:

B(3) = B(0)k (7.70)

BUT:
∇×A(3) = 0 (7.71)

In electrodynamics the B(3) spin field is [2]– [18]:

B(3)∗ = −i κ

A(0)
A(1) ×A(2) (7.72)

where

A(1) = A(2)∗ =
A(0)

√
2

(i− ij) ei(ωt−κZ) (7.73)

where Ω is the electromagnetic angular frequency. In magneto-statics (Eq.(7.56)
the angular frequency Ω is zero. The magneto-static potential rotates (as we
have seen), but the electromagnetic potential rotates and also translates along
an axis such as Z.

The electrodynamic spin field B(3) is observed by its magnetization of matter
in the inverse Faraday effect [2]– [18]. This observation shows that classical
electrodynamics and non-linear optics are manifestations of general relativity.
The spin connection of the inverse Faraday effect is:

ω
(1)
IFE =

κ

A(0)
A(1) (7.74)

and without the spin connection there is no inverse Faraday effect. Since all
physics must be independent of observer influence (must be objective and co-
variant under the general coordinate transformation), all physics, including elec-
trodynamics, must be general relativity.

This means that the electromagnetic field under any circumstance must orig-
inate in a spinning space-time described by Cartan torsion [2]– [18]. In turn
this means that the spin connection is non-zero under any circumstance, as
emphasized in this section for the electro-statics and magneto-statics. If the
spin connection is non-zero the B(3) spin field is always non-zero. In Maxwell
Heaviside field theory on the other hand the spin connection is zero because the
electromagnetic field is philosophically different, it is an entity superimposed on
Minkowski space-time, and in this space-time there is no B(3) field, contrary to
observation.

Having shown that the spin connection has a 1/Z dependence for the stan-
dard model Coulomb law, this type of spin connection may now be used in the
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7.2. THE ECE RESONANCE COULOMB LAW

resonance equation (7.10) for the potential in general relativity. Therefore in
the resonance equation:

∇2φ− ω ·∇φ− (∇ · ω)φ = − ρ

ε0
(7.75)

a vector spin connection of the following type may be used self-consistently

ω =
A

Z
k (7.76)

where A is a scaling factor. The initial driving charge density may be defined
for convenience as:

ρ = −ρ0 cos (κZ) (7.77)

In the H atom this cosinusoidal dependence may be assumed to originate in the
jitterbugging motion (zitterbewegung) that has its rigorous origins in quantum
electrodynamics. In a molecule such as water it may be assumed to originate in
a rotational or vibrational frequency of the molecule. Therefore the resonance
equation becomes:

∇2φ− A

Z

∂φ

∂Z
+

A

Z2
φ =

ρ0

ε0
cos (κZ) (7.78)

The simplest example [2]– [18] of a resonance equation is the linear inhomoge-
neous differential equation:

ẍ+ 2βẋ+ ω2
0x = α cosωt (7.79)

This is a forced damped oscillator with driving term α cosωt. The damping
term is 2βẋ and the Hooke’s law term is ω2

0x. The frequency resonance from
Eq.(7.78) is well known [2]– [18] to occur at:

ωR =
(
ω2

0 − 2β2
)1/2

(7.80)

and the kinetic energy resonance occurs at:

ωE = ω0 (7.81)

Therefore at some fixed values:

A

Z
=

A

Z0
,

A

Z2
=

A

Z2
0

(7.82)

Eq.(7.77) becomes:

∇2φ− A

Z0

∂φ

∂Z
+

A

Z2
0

φ =
ρ0

ε0
cos (κZ) (7.83)

Thus wave-number resonance occurs from Eq.(7.79) at:

κR =
A√
2

1
Z0

(7.84)

and kinetic energy resonance at a wave-number:

κE =
A1/2

Z0
(7.85)
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At resonance the particular (or transient) solution for the potential is [2]– [18]:

φ (κ) =
1
ε0

ρ0 cos (κZ − δ)((
A

Z2
0

− κ2

)2

+
A2

Z2
0

κ2

)1/2
(7.86)

where

δ = tan−1

(
Aκ/Z0

κ2 −A/Z2
0

)
(7.87)

7.3 Graphical results and discussion

To study the effects of spacetime resonance in Hydrogen on a quantitative level,
appropriate numerical code has been developed. Energy levels and radial wave
functions are obtained from the solution of the Schrödinger equation. For the
Coulomb potential of standard theory a well-known analytical solution exists.
Resonance effects, however, require the resonance potential of equation (7.85) to
be added to the standard (non-resonant) Coulomb potential. Then an analytical
solution of the Schrödinger equation is no longer possible and the equation has
to be solved numerically. So the overall numerical approach is to modify the
standard Coulomb potential by the analytical form given in equations (7.86),
(7.87) and compute the energies and radial wave functions by the numerical
code. The latter has been developed as described in detail in [27]. Throughout
the presentation of the results atomic units are used, i.e. length is measured in
Bohr radius and energy in Rydberg units (1Ryd = 13.605eV ).

In all calculations equation (7.86) has been multiplied by an exponential
function e(−r/1.25) in order to bring the charge oscillations to zero in the
limit r → ∞. Otherwise there were unphysical oscillations in the potential at
large radii which would lead to unbound free-space solutions of the Schrödinger
equation.

The first question to answer is why the Coulomb law of standard theory is
valid to high precision although the spin connection is present. One answer is
given by equations (7.28), (7.29): half of the Coulomb potential in the general
relativistic (ECE) description consists of the spin connection. If we allow for a
varying strength of the spin connection, (variable A in equation (7.17)) we can
study this effect numerically. For this purpose equation (7.18), which describes
the radial part of the Coulomb potential, was programmed numerically and
solved for several values of A. In the case ρ = 0 and A = 0 the 1/r potential is
obtained to high precision. To see how A effects deviations from the 1/r form
of the Coulomb potential we have chosen the same initial conditions as for the
case A = 0 and integrated the equation from a radius r = rmax down to a
radius near to r = 0. The results for different A’s are presented in Table 7.1 for
certain radius values. Significant deviations are only visible for very small radii
(r ≈ 0.1). At r = 1 the deviation from the 1/r potential is only 1 part in 10, 000
for relevant A values (up to A = 2). Even for A = 10 changes are remarkable
only near to the center. For experiments this means that the spin connection
has no measurable effect in off-resonance except very near to the position of a
charge.

The resonance curve of the atomic energy levels is shown in Fig. 7.1. The
wave number κ has been varied as indicated on the x axis, the other parameters
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r -1/r VC(r), A=0 A=1 A=2 A=10
0.1 -1.000000E+01 -1.000000E+01 -9.965750E+00 -9.945510E+00 -9.897040E+00
1.0 -1.000000E+00 -1.000000E+00 -9.999656E-01 -9.999449E-01 -9.998938E-01
3.0 -3.333333E-01 -3.333333E-01 -3.333321E-01 -3.333314E-01 -3.333296E-01
10.0 -1.000000E-01 -1.000000E-01 -9.999999E-02 -9.999998E-02 -9.999995E-02

Table 7.1: Values of ECE Coulomb potential at certain radii in dependence of
A (atomic units)

were fixed: A = 1, Z0 = 1.5, ρ0 = 0.1. For large κ one obtains the off-
resonance case with the well-known energy levels of H. For decreasing κ (and on
setting resonance effects) the degeneracy of the l quantum number disappears,
resulting in a splitting between l levels of the same principal quantum number.
The 1s energy is greatly lifted, the maximum occurs at the resonance wave
number κ = 0.75. Interestingly there is a sharp peak to negative energy values
directly below the kinetic energy resonance so that the resonance shows up
a pole-like behaviour. The middle of both extrema lies at κ = 0.67 which
is the kinetic energy resonance given by equation (7.85) for the parameters
mentioned above. The width of the pole is determined by the damping term of
the governing differential equation (7.83). Obviously the width depends on the
quantum number, it is smaller for the 2p state than for the 1s state. Besides
the 1s state, also the 2s and 3s state are lifted. This leads to an inversion of s
and p energy levels compared to multi-electron atoms where the s states have
lower energies than the p states. The same holds for the 3d states.

In the limit κ → 0 there is again an increase of the energy levels, but this
is due to the fact that the resonance potential in this case tends to a constant
positive value (see discussion of Fig. 7.7 below). So this is an artifact of the
variation parameter of the graph.

The question is what happens to the atomic wave functions (radial functions)
in case of resonance. This is explained in Figs. 7.2,7.3,7.4. There some orbitals
are shown for three κ values, and additionally the orbitals for the atom without
a resonance potential (denoted by 0). The κ values are 0.6 (lower resonance
peak, A), 0.75 (upper resonance peak, B) and 2 (off-resonance, C). As can
be seen for the three graphed quantum states (1s, 2s, 2p), the charge density
is shifted inwards to the core for the lowered energy and shifted outwards for
the lifted energy levels. The resonance effect is quite drastic for the 1s state
because the energy shift is highest in this case. A second local maximum occurs
for r ≈ 4 which is not present in off-resonance. The characteristic of the atomic
state is altered completely. Nevertheless it is a valid eigenstate for the angular
momentum l = 0 because there is no passing through zero. A corresponding
result holds for the 2s state.

The lower energy resonance of the 2p state (Fig. 7.4) deserves particular
attention. It shows that, at this point of resonance, states are significantly more
localized than in the undisturbed atom. The localization radius here coincides
with the value of Z0 = 1.5. This is not so obvious for the other states.

The reason for the energy and wavefunction shifts can be found by looking
at the potentials. In Fig. 7.5 the resonance potential according to equation
(7.86) is shown. The negative resonance appears due to a negative bump in
the potential while at the positive resonance the potential becomes significantly
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repulsive near to the core. In off-resonance the potential is more pure oscillatory,
averaging the impact on the energies and wavefunctions. It can nicely be seen
also that the oscillation has slown down for increasing radii by means of the
additional exponential damping.

Fig. 7.6 presents the total potential including the standard Coulomb term.
A repulsive maximum is seen in the positive resonant case. For the negative
resonance the potential is lowered in a certain range. The switching between
both states takes place in a very narrow region of κ values as has been seen
in Fig. 7.1. The reason is the phase jump of the resonance potential being
described by equation (7.87). According to the well-known theory of forced
oscillations, the phase changes rapidly by 180 degrees in this region. This can
further be seen from Fig. 7.7 where the maximum resonance amplitude has been
plotted in dependence of κ. There is a sign change at κ = 0.67. In addition the
integral over the resonance potential∫ rmax

0

φ(κ, Z)dZ (7.88)

is shown. There is an even more significant jump in this curve at the same κ.
It is important to note that the integral tends to zero for large wavenumbers.
This means that the net contribution to the charge density is zero as is required
for charge neutrality. In other words, the exponential damping function has no
detrimental effect on charge neutrality.

In the following diagrams several further resonance curves are given. The
effect of the strength of spin connection is visible from Fig. 7.8. According to
equation (7.85) there is a connection between the resonant κ, the spin connection
strength A, and the radius parameter Z0:

κ =
A1/2

Z0
(7.89)

With κ = 0.75 and Z0 = 1.5 this gives a resonant A value of

AE = κ2
EZ

2
0 = 1.27 (7.90)

The maximum of the 1s energy, however, occurs at A = 1, which corresponds
to κ = 0.67, the resonance value of Fig. 7.1.

Variation of the fixed radius Z0 is shown in Fig. 7.9. According to the choice
of the other parameters the maximum 1s energy is at Z0 = 1.5 as expected. It
should be noted that for Z0 → 0 the energy splitting for the main quantum
numbers disappears. This is plausible from equations (7.86), (7.87) where Φ
and δ tend to zero for Z0 → 0. Consequently, one obtains the original energy
levels of the H atom in this case.

The next two figures (Figs. 7.10 and 7.11) reveal the characteristics of the
resonance itself for varying parameter configurations. For fixed A = 1 the
value of Z0 was varied, while at the same time the value of κ was taken to be
at resonance according to equation (7.85). Since the energy values are quite
different at wavenumbers near to the resonance (the behaviour is pole-like as
explained earlier) we have drawn two curves, one for the lower energies at a
value

κ =
A1/2

Z0
− 0.05 (7.91)
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(see Fig. 7.10) and one for the upper energies at

κ =
A1/2

Z0
+ 0.05 (7.92)

(Fig. 7.11). From Fig. 7.10 it can be seen that the energy minima come to
lie at different Z0 values in dependence of the orbital. Because the latter differ
in their radial charge distribution, they are affected in an individual way. The
energy inversion of s, p and d states has already been mentioned.

The corresponding curve for the resonance maxima (Fig. 7.11) looks differ-
ently. There is no maximum energy in the range of Z0 values. For increasing Z0

the wave functions are shifted more and more outwards, leading to a continuous
increase of energies.This may be considered as a transition to the ionization
process where the electron is stripped off of the atom.

The effect of the oscillation strength ρ0 is studied in Figs. 7.12,7.13. Similar
as in Figs. 7.10,7.11 we have chosen κ values at the resonance minimum and
maximum: κ = 0.61 and κ = 0.72. Switching on the oscillation leads to a
mostly linear decrease of energy levels for the minimum (Fig. 7.12), while
energies increase to a maximum value in the other case (left half of Fig. 7.13).
For ρ0 > 0.1 there is no further change since the wave functions have shifted to
the outer region where changes in the repulsion potential near to the core have
no effect. Again there is an inversion of the angular momentum dependence.
For κ0 → 0 one obtains the original orbital energies of the H atom as expected.

Finally we make some general remarks on the resonance effect in Hydro-
gen. The numerical results have shown that there is a resonance effect as pre-
dicted by the theory and found experimentally in solid materials by the Mexican
group. The mechanism of raising the binding energy of the valence electron by
resonance has been demonstrated in several resonance diagrams. The ioniza-
tion effect itself has not been modeled because this requires the inclusion of
non-normalizable continuum states. In addition to the raising of energy, there
is always a drop of the binding energy at the opposite side of the resonant
wavenumber.

If the frequency of excitation charge density ρ has a certain bandwidth, it is
plausible that two effects are initiated at the same time: production of conduc-
tion electrons by raising energies and production of very deeply bound electrons
by lowering energies. Both effects are a consequence of resonant interaction
with spacetime. The lowering of electronic states reduces thermal vibration
amplitudes which may result in a macroscopic temperature reduction. Thus
the experimental finding can be explained that effects of spacetime resonances
are often accompanied by a decrease of temperature, an effect, which seems to
contradict thermodynamics if one tries to explain it by standard theory.

After the spacetime resonance of the H atom has been studied, the next
steps are to investigate these effects in many-electron atoms, molecules and
solids. For this, the covariant form of the Coulomb law (equation (7.10)) has to
be used in numerical methods which are available today for calculating electronic
properties of these materials.
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Figure 7.11: Combined z0/wavenumber resonance, upper energies
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Figure 7.13: ρ0 resonance, upper energies
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