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A generally covariant and gauge invariant description of physical op-
tics, the Sagnac effect, and the Aharonov-Bohm (AB) effect is devel-
oped using the appropriate phase factor for electrodynamics. The lat-
ter is a generally covariant development of the Dirac-Wu-Yang phase
factor based on the generally covariant Stokes theorem. The Maxwell-
Heaviside (MH) field theory fails to describe physical optics, interferom-
etry, and topological phase effects in general because the phase factor
in that theory is under-determined. A random number from a U(1)
gauge transformations can be added to the MH phase factor. The gen-
erally covariant phase factor of the Evans unified field theory is gauge
invariant and has the correct property under parity inversion to pro-
duce observables such as reflection, interferograms, the Sagnac and AB
effects, the Tomita-Chao effect and topological phase effects in general.
These effects are described simply and self consistently with the gener-
ally covariant Stokes theorem in which ordinary exterior derivative is
replaced by the covariant exterior derivative of differential geometry.

Key words: Evans unified theory, B(3) field, physical optics, reflection,
interferometry, Sagnac effect, AB effect, Tomita-Chao effect, topologi-
cal phase effects.

1. INTRODUCTION

In generally covariant electrodynamics [1-8] the potential field is the
tetrad within a C negative coefficient, and the gauge invariant electro-
magnetic field is a wedge product of tetrads. The covariant exterior
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derivative is used to describe the electromagnetic field using the first
Maurer-Cartan structure relation of differential geometry [9]. The gen-
erally covariant field theory leads to O(3) electrodynamics and the
Evans-Vigier field B(3). The latter is observed in several experiments,
including the inverse Faraday effect [10]. The experimental evidence
for the B(3) field, and thus for generally covariant electrodynamics, is
reviewed in the literature [11].

In this paper a generally covariant Dirac-Wu-Yang phase is de-
fined within Evans unified field theory by using a generally covariant
exterior derivative to develop the Stokes theorem of differential geome-
try [12]. The electromagnetic phase factor is described by this generally
covariant Stokes theorem. This procedure produces the correct parity
inversion symmetry needed to describe fundamental physical optical
phenomena such as reflection and interferometry. The MH theory of
electrodynamics is not generally covariant, i.e., is a theory of special
relativity, and for this reason is unable to describe physical optics and
interferometry, and unable to describe the Sagnac and AB effects. In
Sec. 2, these shortcomings of the MH theory are summarized. In Sec. 3
the Evans unified field theory is applied to physical optics, which is cor-
rectly described with a phase factor constructed from the appropriate
contour and area integrals of the generally covariant Stokes theorem.
This procedure gives the correct parity inversion symmetry of the elec-
tromagnetic phase factor, and so is able to correctly describe physical
optical phenomena such as reflection, interferometry, the Sagnac ef-
fect and the AB effect. In each case the generally covariant theory is
simpler than the MH theory and at the same time is the first correct
theory of physical optics as a theory of electrodynamics.

2. SHORTCOMINGS OF THE MAXWELL-HEAVISIDE
FIELD THEORY IN PHYSICAL OPTICS

In the MH field theory the phase factor is defined by

ΦMH = exp[i(ωt− κZ)], (1)

where ω is the angular frequency of radiation at instant t and κ is the
wave number of radiation at point Z in the propagation axis. Under a
U(1) gauge transformation [13] the phase factor (1) becomes

ΦMH → exp(iα)ΦMH = exp[i(ωt− κZ + α)], (2)

where α is arbitrary. In consequence the phase factor is not gauge in-
variant, a major failure of MH field theory. In other words the phase
factor (2) is undetermined theoretically, because any number α can be
added to it without affecting the description of experimental data. In
Michelson interferometry [14], for example, an interferogram is formed
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by displacing a mirror in one arm of the interferometer, thus chang-
ing Z in Eq. (1) for constant ω, t and κ. The path of a beam of light
from the beam-splitter to the mirror and back to the beam-splitter is
increased by 2Z. The conventional description of Michelson interfer-
ometry incorrectly asserts that this increase 2Z in the path of the light
beam results in a change of phase factor

∆ΦMH = exp(2iκZ) (3)

producing the observed interferogram, cos(2κZ), for a monochromatic
light beam in Michelson interferometry.

This basic error in the conventional theory has been reviewed
in detail in Ref. [11]. The main purpose of this paper is to show that
the error is corrected when the theory of electrodynamics is developed
into a generally covariant unified field theory.

The origin of the error is found when parity inversion symmetry
is examined. Consider the parity inversion symmetry of the product
κ · r of wave vector κ and position vector r:

P̂ (κ · r) = κ · r (4)

because
P̂ (κ) = −κ, (5)

P̂ (r) = −r. (6)

Parity inversion is equivalent to reflection, and so κZ does not change
under reflection in the MH phase factor (1). This means that the
reflected phase factor is the same as the phase factor of the beam before
reflection. In terms of the Fermat principle of least time in optics [15],
this means

Φ2 = e0Φ1 = Φ1, (7)

where Φ1 is the phase factor of the wave before reflection and Φ2 the
factor after reflection.

The experimentally observed interferogram in the Michelson in-
terferometer [14] and in reflection in general must be described, how-
ever, by

Φ2 = e2iκZΦ1, (8)

and so the MH field theory of electrodynamics fails at a fundamental
level to describe physical optics. Various hand-waving arguments have
been used over the years to address this problem, but there has never
been a solution. The reason is that there cannot be a solution in
special relativistic gauge field theory because, as we have seen, the
phase factor is not gauge invariant; a random number α can be added
to it [13]. This number is random in the same sense that χ is random
in the usual gauge transform of the MH potential, i.e.,

A → A + ∇χ. (9)
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The U(1) gauge transformation is a rotation of the phase factor (2),
a rotation of a gauge field brought about by multiplication by the
rotation generator of U(1) gauge field theory, the exponential eiα. It
is always argued in U(1) gauge transformation that χ is unphysical;
so, for self-consistency, α must be unphysical. However, an unphysical
factor α cannot appear in the phase factor [13] of a physical theory, i.e.,
a theory of physics aimed at describing data. So the MH field theory
fails at a fundamental level to describe physical optics. In other words,
MH gauge field theory fails to describe reflection and interferometry.

The Sagnac interferometer [13] with platform at rest produces
an observable interferogram both in electromagnetic waves and matter
waves (interfering electron beams [11]):

γ = cos(2ω2/c2Ar), (10)

where Ar is the area enclosed by the interfering beams (electromag-
netic or electron beams). When the platform is rotated at an angular
frequency Ω, a shift is observed in the interferogram:

∆γ = cos(4ωΩ/c2Ar). (11)

The interferograms (10) and (11) are independent of the shape
of the area Ar, and are the same to an observer on and off the rotating
platform. There have been many attempts to explain the Sagnac ef-
fect since it was first observed, all have their shortcomings, as reviewed
by Barrett [13]. In particular the MH field theory (a U(1) gauge field
theory) is wholly incapable of explaining the effect [13], either with
platform at rest or in motion. In Sec. 3 it is shown that the Sagnac
effect is described straightforwardly in the Evans unified field theory
as a change in the Cartan tetrad [1-8]. It is well known that the tetrad
plays the role of metric in differential geometry. This gets to the core
of the problem with MH theory – it is a theory of flat spacetime and
so is metric-invariant [13]. The phase factor (1) of the MH field theory
is a number, and so is invariant under both parity and motion reversal
symmetry. The phase factor (1) has no sense of parity, of handedness
or of chirality (of being clockwise of anticlockwise) and does not change
under frame rotation or platform rotation. The MH theory cannot de-
scribe any feature of the Sagnac effect, and again fails at a fundamental
level.

There has been a forty-year controversy over the AB effect [12].
The only way to describe it with MH field theory is to shift the prob-
lem to the nature of spacetime itself. It is asserted conventionally [12]
that the latter is multiply connected and that this feature (rather mag-
ically) produces an AB effect by U(1) gauge transformation into the
vacuum. It is straightforward to show as follows that this assertion is
incorrect because it violates the Poincaré lemma. In Sec. 3 we show
that the Evans unified field theory explains the AB effect with the cor-
rect generally covariant phase factor. This is the same in mathematical
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structure as for the Sagnac effect and physical optics, only it interpre-
tation is different. The Evans unified theory is therefore much simpler,
as well as much more powerful, than the earlier MH field theory. To
prove that the MH theory of the AB effect is incorrect, consider the
Stokes theorem in the well-known [9] notation of differential geometry:

exp

(
ig

∮
δS

A

)
= exp

(
ig

∮
S

d ∧ A
)
, (12)

where A is the potential one-form and d ∧ A is the exterior derivative
of A, a two-form. The factor g in the AB effect is e/~, where −e is the
charge on the electron and ~ is the Dirac constant (h/2π). Under the
U(1) gauge transformation

A→ A+ dχ (13)

the two-form becomes

d ∧ A→ d ∧ A+ d ∧ dχ. (14)

However, the Poincaré lemma asserts that, for any topology,

d ∧ d := 0. (15)

Therefore the two-form d∧A is unchanged under the U(1) gauge trans-
formation (13). The Stokes theorem (12) then shows that∮

δS

dχ := 0. (16)

However, the conventional description of the AB effect [12] relies on
the incorrect assertion ∮

δS

dχ 6= 0. (17)

This is incorrect because it violates the Poincaré lemma (15). The
lemma is true for multiply-connected as well as simply-connected re-
gions. In ordinary vector notation the lemma states that, for any func-
tion χ,

∇×∇χ := 0, (18)

and this is true for a periodic function because it is true for any func-
tion. A standard freshman textbook [16] will show that the Stokes
theorem and the Green theorem are both true for multiply-connected
regions as well as for simply-connected regions.

There is therefore no correct explanation of the AB effect in
MH theory and special relativity. Similar arguments show that MH
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theory cannot be used to describe a topological phase effect such as
the Tomita-Chao effect, a shift in phase brought about by rotating a
beam of light around a helical optical fibre. In Sec. 3 we show that
the Tomita-Chao effect is a Sagnac effect with several loops, and is a
shift in the Cartan tetrad of the Evans unified field theory. Similarly,
the Berry phase of matter wave theory is a shift in the tetrad of the
Evans unified field theory. Many more examples could be given of the
advantages of the Evans unified field theory over the MH theory.

3. GENERALLY COVARIANT PHASE FACTOR FROM
THE EVANS UNIFIED FIELD THEORY

The first correct description of the phase factor in electrodynamics was
given in Ref. [11]. Since then, a unified field theory has been developed
[1-8] which in turn gives a further insight to the phase factor of electro-
dynamics and physical optics. In order to construct a phase factor that
has the correct symmetry under parity inversion, which is generally co-
variant and valid for all topologies, and which furthermore is correctly
gauge invariant, we use the generally covariant Stokes theorem in dif-
ferential geometry within the exponent of the electromagnetic phase
factor. The phase factor is therefore an application of Eq. (12) for the
propagating electromagnetic field, which is considered to be part of
the generally covariant unified field theory [1-8]. Therefore the phase
factor of electrodynamics and physical optics is

Φ = exp

(
ig

∮
DS

A

)
= exp

(
ig

∫
S

D ∧ A
)

(19)

under all conditions (free or radiated field and field matter interaction).
We shall show in this section that the phase factor (19) pro-

duces fundamental phenomena of physical optics such as reflection and
interferometry through a difference in contour integrals of Eq. (19)

∆Φ = exp

(
i

(∮ Z

0

κ · dr−
∮ 0

Z

κ · dr
))

. (20)

It is also shown that the phase factor (19) can be written as

Φ = exp

(
i

∮
κ · dr

)
= exp

(
i

∫
κ2dAr

)
(21)

and automatically gives the Sagnac effect from the right-hand side of
Eq. (21). Equation (21) follows from the generally covariant Stokes for-
mula applied to the one-form κ of differential geometry, the one-form
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that represents the wave number. In Eq. (19), D∧A is the covariant ex-
terior derivative [1-9] necessary to make the theory correctly covariant
in general relativity. Equation (19) is the generally covariant Stokes
theorem, i.e., the Stokes theorem defined for the non-Euclidean geom-
etry of the base manifold and therefore in general relativity [11], and
it follows from differential geometry that D ∧ A is a two-form. The
electromagnetic phase can be written in general

Φ = exp

(
i

∮
DS

κ

)
= exp

(
i

∫
S

D ∧ κ
)

; (22)

and Eq. (19) and (22) are equivalent definitions provided that we recog-
nise the following duality between the electromagnetic field as a poten-
tial one-form, denoted by A in differential geometry [9], and the wave
number one-form κ:

κ = gA. (23)

Here g is a constant of proportionality between the A and κ one-forms.
From gauge theory [11] g is given by the wave-particle dualism repre-
sented by

p = ~κ = eA, (24)

where p is a momentum one-form. The duality (24) asserts that the
photon is a particle with momentum ~κ and also a field with momen-
tum eA, where −e is the charge on the electron. The meaning of the
duality (24) has been explained extensively in the literature on O(3)
electrodynamics [11]. The charge e is defined as the ratio of magni-
tudes:

e = |p|/|A|, (25)

and so Eq. (23) means that the wave number in physical optics and
electrodynamics is multiplied by the potential and divided by the mag-
nitude of the potential to inter-relate the field as particle with momen-
tum ~κ and the field as wave, with momentum eA. This is the de
Broglie wave-particle duality applied to the electromagnetic field.

The electromagnetic phase in unified field theory and general
relativity is therefore

Φ = exp

(
i

∮
DS

κ

)
= exp

(
i

~

∮
DS

p

)
= exp

(
ig

∮
DS

A

)
, (26)

which is the generally covariant Dirac phase or Wilson loop for electro-
dynamics as part of a unified field theory [1-8]. The covariant derivative
appearing in Eq. (19) is defined in the notation of differential geometry
by

D ∧ A = d ∧ A+ gA ∧ A. (27)
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The symbol A is convenient shorthand notation for the tetrad Aa
µ [1-9],

so Eq. (27), for example, denotes

(D ∧ Ac)µν = (d ∧ Ac)µν + gAa
µ ∧ Ab

ν . (28)

For O(3) electrodynamics with orthonormal space index

a = (1), (2), (3) (29)

the complex circular basis, then:

D ∧ A(1)∗ = d ∧ A(1)∗ − igA(2) ∧ A(3), et cyclicum. (30)

In Eq. (30) the indices µ and ν of the base manifold have been sup-
pressed, as is the custom in differential geometry [9], because Eqs. (27)
to (30) are equations of differential geometry valid for all geometries
of the base manifold. So, the indices µ and ν are always the same on
both sides and can be suppressed for convenience of notation [9]. The
shorthand notation of Eq. (27) is therefore a summary of the essential
features of Eqs. (28) to (30). The B(3) form of differential geometry

B(3) = D ∧ A(3) = −igA(1) ∧ A(2), (31)

is the expression of the fundamental Evans-Vigier field [11] in differ-
ential geometry. The B(3) form is a component of a torsion tensor
(a vector valued two-form or antisymmetric tensor), and is the spin
Casimir invariant of the Einstein group. It will be demonstrated in
this section that it is responsible for and therefore observed in all phys-
ical optical effects through the generally covariant and gauge invariant
phase factor of electrodynamics

Φ = exp

(
ig

∮
DS

A(3)

)
= exp

(
ig

∫
S

B(3)

)
. (32)

Equation (32) is the result of a generally covariant theory of
electrodynamics and it is necessary to be precise about the meaning
of the contour integral on the left-hand side and the area integral on
the right-hand side of Eq. (32). In particular, A(3) is an irrotational
function, whose curl vanishes. It follows that Eq. (32) cannot be the
result of the ordinary Stokes theorem∮

δS

A =

∫
S

B =

∫
S

d ∧ A, (33)

in which d∧ is the ordinary exterior derivative [11] of differential ge-
ometry. In vector notation, Eq. (33) reads∮

A · dr =

∫
B · kdAr =

∫
∇×A · kdAr, (34)
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and for an irrotational function A both sides of Eq. (34) vanish. There-
fore, in Eq. (32),

∮
A(3) is not the result of an integration around a

closed loop as defined in the ordinary Stokes theorem [16].
Another way of seeing this is that, if we attempt to integrate

the ordinary plane wave

A =
A(0)

√
2

(i− ij)eiφ (35)

around a closed loop (such as a circle) using the ordinary Stokes theo-
rem, we obtain the result∮

A · dr =

∫
∇×A · kdAr = 0. (36)

The right-hand side is true because k is perpendicular to i and j, and
the left-hand side is proven by parameterizing the circle as

dx = −x0 sin θdθ, dy = y0 cos θdθ (37)

and using ∫ 2π

0

sin θdθ =

∫ 2π

0

cos θdθ = 0. (38)

This means that the ordinary Stokes theorem of special relativity can-
not be used to represent the phase factor of electrodynamics. The
essential reason for this is that electrodynamics must be a theory of
general relativity in which the exterior derivative is replaced by the
covariant exterior derivative [1-9] under all conditions (free field and
field-matter interaction). Only in this way can a unification of gravita-
tion and electromagnetism be achieved [1-8] within general relativity.

This type of field unification is the result of the principle of
general relativity, i.e., that all theories of physics must be theories of
general relativity. (The MH theory is the archetypical theory of special
relativity, and is not generally covariant. This leads to the fundamental
problems summarized in Sec. 2.)

The method of interpreting Eq. (32) is found by considering
integration around the transverse part of a helix. The transverse part
of a helix is a position vector which coils around the Z axis as follows:

r = (Xi− iY j)eiφ (39)

and defines a non-Euclidean (curling) base-line in the non-Euclidean
base manifold of general relativity. The product

r2 = r · r∗ = X2 + Y 2 (40)
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A, B B A

Fig. 1. Representation of the circle whose circumference is the same as
the arc length of the helix AB.

for the helix is the same as for a circle of radius r. Therefore integration
around the transverse part of a helix is the same as integration around
a circle of circumference 2πr and area πr2 provided that the arc length
of the helix is also 2πr. The arc length is the distance along the helix
from A to B in Fig. 1. This diagram summarizes the process of taking
a circle of diameter 2r and drawing it out into a helix coiled along the
Z axis. The distance from A to B around the circumference of the
circle is the same as the distance from A to B along the transverse
part of the helix (its arc length [16]). The difference between the helix
and the circle is that there is a longitudinal component of the helix,
the distance along the Z axis from A to B. The arc length of the helix
is along its transverse component from A to B, therefore the distance
along Z from A to B is defined by

Z ≤ 2πr. (41)

When this distance is equal 2πr, the helix becomes a straight line of
length 2πr along the Z axis.

The difference between the helix and the circle illustrates the
difference between the generally covariant Stokes theorem and the or-
dinary Stokes theorem, and is also the essential difference between gen-
erally covariant electrodynamics and MH electrodynamics in which ra-
diation is the plane wave (35), with no longitudinal component. In
generally covariant electrodynamics there is a longitudinal component,
the Z component of the helix. The latter can be parameterized [16] by

x = x0 cos θ, y = y0 sin θ, z = z0θ, (42)

and so contains both longitudinal and transverse components. The
circle can be parameterized [16] by

x = x0 cos θ, y = y0 sin θ (43)

and contains only components which are perpendicular, or transverse,
to the Z axis. The latter is evidently undefined in the circle, but well
defined in the helix.
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It is well accepted that electromagnetic radiation propagates
and so contains both rotational and translational components of emo-
tion. These must be described by the helix, and not by the plane wave
of the MH theory in special relativity. There must be longitudinal
components of the free electromagnetic field, represented by A(3) and
B(3).

The ordinary Stokes theorem cannot be applied to the helix,
because the latter does not define a closed curve, i.e., the path from
A to B of the helix is not closed. In the circle the path around the
circumference from A to B brings us back to the starting point, and
defines the area of the circle. In order to close the path in the helix
the path from A to B along its transverse part must be followed by
the path back from B to A along its Z axis, as in Fig. 2. The closed
path on the right-hand side of this diagram defines the contour integral
of the generally covariant Stokes theorem appearing on the left-hand
side of Eq. (32). Furthermore, as we have seen, integration around the
transverse part of the helix is equivalent to integration around a circle
whose circumference is equal to the arc length of the helix. Therefore
the plane wave contributes nothing to the generally covariant Stokes
theorem because the integration of the plane wave around a circle is
zero, as shown in Eq. (34) to (38).

BAB A

Fig. 2. Representation of the line over which the integral is evaluated
in the non-Abelian Stokes theorem and Evans phase law.

It is concluded that the electromagnetic phase in generally co-
variant electrodynamics and physical optics is completely described by
Eq. (32). The contour integral on the left-hand side of this equation
is along the Z axis of the helix whose arc length is the same as the
circumference 2πr of a circle of radius r. The area integral on the
right-hand side of Eq. (32) is an integral around the area πr2 of this
circle. The contour integral is an integral over the irrotational and lon-
gitudinal potential field A(3), and the area integral is an integral over
the Evans-Vigier field B(3), the spin invariant of the Einstein group.
Therefore all of the physical optics and electrodynamics are described
by a phase factor which is completely defined by A(3) and B(3).

In the following sections, applications of this law are given for
reflection, interferometry, the Sagnac effect and the AB effect. The
catastrophic failings of the MH field theory of special relativity (sum-
marized in Sec. 2) are corrected in each case. The easiest way to see
that the MH theory is not generally covariant is to note that the plane
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wave defines a finite scalar curvature

R = (∂2A(1)/∂Z2)/|A(1)| = κ2. (44)

However, in special relativity, the scalar curvature R = 0 by definition,
because the spacetime of a theory of special relativity is Euclidean
(or “flat”). In the generally covariant description of electrodynamics,
the scalar curvature κ2 of the helix is consistent with the fact that we
are reconsidering a baseline that coils around the Z axis in the base
manifold.

4. REFLECTION AND MICHELSON
INTERFEROMETRY

The generally covariant phase law (32) has the correct parity inversion
symmetry for the description of reflection in physical optics, and thus
of Michelson interferometry. Considering the Z axis as the propagation
axis, the parity inversion symmetry is∮

κ(3)dZ
p̂→ −

∮
κ(3)dZ, (45)

and so parity inversion is equivalent to traversing the path along the
Z axis in the opposite direction∫ Z

0

κ(3)dZ
p̂→

∫ 0

Z

κ(3)dZ. (46)

Traversing the path in the opposite direction therefore produces the
following change in phase factor:

exp

(
i

∫ Z

0

κ(3)dZ

)
→ exp

(
i

∫ 0

Z

κ(3)dZ

)
, (47)

producing the experimentally observed phase change upon normal re-
flection of electromagnetic radiation from a perfectly reflecting mirror:

exp

(
i

∫ Z

0

κ(3)dZ

)
exp

(
i

∫ 0

Z

κ(3)dZ

)
= exp(2iκ(3)Z). (48)

In Michelson interferometry [14] the phase change (48) is observed as
the cosinal interferogram for a monochromatic beam of radiation:

∆γ = cos(2κ(2)Z). (49)
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In MH electrodynamics (special relativity) normal reflection
produces no phase change, because normal reflection, by definition,
is equivalent to the parity inversion (4). The latter produces no change
in phase in MH electrodynamics, and no Michelson interferogram, con-
trary to experimental observation. In generally covariant electrody-
namics, the phase factor is chiral (or handed) in nature, because it is
defined by the following cyclic equation:∮

A(3) · dr = −ig
∫

A(1) ×A(2) · kdAr, (50)

an expression of the generally covariant Stokes theorem.

5. THE SAGNAC EFFECT

The generally covariant phase law (32) can be exemplified by integra-
tion around a circle of radius r. The area on the right-hand side of
Eq. (32) in this case is πr2, so we obtain∫

B(3) · kdAr = πr2B
(3)
Z = πr2B(0). (51)

The phase factor observed in the Sagnac effect therefore originates in
the phase law (32) as follows:

Φ = exp(igB(0)πr2) = exp(iκ2Ar) = exp(iω2/c2Ar), (52)

where we have used

B(0) = κA(0), g = κ/A(0), Ar = πr2. (53)

The Sagnac effect with platform at rest is an interferogram formed from
interference of clockwise and counter-clockwise waves, one with phase
eiκ2Ar and one with phase factor e−iκ2Ar giving the difference in phase
factor e2iκ2Ar and interferogram:

∆γ = cos(2κ2Ar) = cos(2ω2/c2Ar), (54)

as observed experimentally (13) with great precision in the ring laser
gyro and similar devices. In the MH theory there is no explanation
for the Sagnac effect, as we have argued, because the MH phase is
parity invariant with no sense of chirality. In MH theory there is no
counterpart of the beam area, as on the right-hand side of the generally
covariant phase law (32).
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When the platform of the Sagnac effect is rotated at angular
frequency Ω, there is a frequency shift

ω → ω ± Ω, (55)

giving rise to an extra interferogram from the phase law (32):

∆∆γ = cos
(
4ωΩ/c2Ar

)
(56)

from the difference

(ω + Ω)2 − (ω − Ω)2 = 4ωΩ. (57)

This is precisely as observed experimentally to great precision in the
ring laser gyro [13].

The left-hand side of the phase law (32) for the Sagnac effect in
a circle of radius r is∫ Z

0

A
(3)
Z dZ = A(0)Z = πr2B(0), (58)

where we have used ∫ Z

0

dZ = Z, A
(3)
Z = A(0). (59)

From Eq. (53) and (58)

2πr ≥ Z = κπr2, κr ≥ 2. (60)

This equation defines the distance from B to A in Fig. 2 in terms of
the area πr2 of a circle whose circumference 2πr is the same as the arc
length of the helix. The latter must always be greater than or equal to
the distance from A to B along Z, so:

κr ≥ 2. (61)

Using
κ = ω/c, (62)

ω = 2πf, (63)

fλ = c, (64)

we find that

κ =
2π

λ
(65)
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and in Eq. (60)

Z =
2π

λ
Ar. (66)

This equation is a result of the phase law (32) and defines the prop-
agation length of electromagnetic radiation in terms of its wavelength
and area.

Equation (66) is the result of generally covariant electrodynam-
ics and shows that a beam of light has a finite area. This result is
obviously consistent with experimental data, but in special relativity
(MH theory) the plane wave has infinite lateral extent, and the area of
a beam of light is ill defined by the plane wave. In general relativity as
we have seen the area is well defined by the phase law (32).

We can cross check this result for the Sagnac effect by integrating
the wave number vector κ around the helix parameterized [16] by:

X = X0 cos θ, Y = Y0 sin θ, Z = Z0θ, (67)

dX

dθ
= −X0 sin θ,

dY

dθ
= Y0 cos θ,

dZ

dθ
= Z0. (68)

The wave number vector is

κ = κXi + κY j + κZk, (69)

and the contour integral on the left-hand side of the phase law (32) is∮
κ · dr = −κXX0

∮
sin θdθ + κY Y0

∮
cos θdθ + κZZ0

∮
θdθ. (70)

The transverse part of the helix gives no contribution to this contour
integral because: ∫ 2π

0

sin θdθ =

∫ 2π

0

cos θdθ = 0. (71)

The longitudinal component along the Z axis from B to A in Fig. 2 gives
the only non-zero contribution to the contour integral, a contribution
originating in ∫ 2π

0

θdθ = 2π2. (72)

So, ∮
κ · dr = 2π2κZZ0. (73)

This result is Eq. (58) after identifying

Z = 2π2Z0, κZ = gA(0)Z. (74)
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The whole of Eq. (73) comes from the contribution along the Z axis in
Fig. 2 through the axis of the helix. This contribution is not present in
special relativity and the conventional Stokes theorem. Our generally
covariant unified field theory [1-8] gives the observed phase factor of
the Sagnac effect with platform at rest from

Φ = exp(iκZ) = exp(iω2/c2Ar) (75)

and also with platform in motion, as argued already.
The topological fundament of this result is that a circle can

be shrunk continuously to a point and is simply connected, but a helix
shrinks continuously to a line, and in this sense is not simply connected.
This is the essential difference between special and general relativity in
optics and electrodynamics.

6. THE AHARONOV-BOHM EFFECT

The AB effect in generally covariant electrodynamics is also described
straightforwardly by the phase law (32):

exp

(
ig

∫
B(3) · kdAr

)
= exp(ig

∮
A(3) · dr)

= exp

(
g2

∫
A(1) ×A(2) · kdAr

)
(76)

The interpretation of Eq. (76) for the AB effect is as follows:
(a) The magnetic field B(3) is the static magnetic field (iron

whisker or solenoid) placed between the two openings of a Young in-
terferometer which measures the interferogram formed by two electron
beams.

(b) Any magnetic field (including a static magnetic field) in
generally covariant electrodynamics is the two-form [1-9]

B = d ∧ A+ gA ∧ A, (77)

and is also the torsion form or wedge product of tetrads:

Bc = −igAa ∧ Ab. (78)

Equation (78) follows from the fact that a magnetic field must be a
component of a torsion two-form (or antisymmetric second rank ten-
sor) that is the signature of spin in general relativity. The concept of
spin is missing completely from Einstein’s generally covariant theory
of gravitation [9]. In the Evans unified field theory, spin (or torsion)
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gives rise to the generally covariant electromagnetic field. Curvature
of spacetime gives rise to the gravitational field, and the latter is the
symmetric product of tetrads [1-8]. In the complex circular basis [11],

c = (3), a = (1), b = (2). (79)

(c) The factor g in Eq. (76) for the AB effect is

g = e/~ (80)

and is the ratio of the modulus of the charge on the electron (situated
in the electron beams) to the reduced Planck constant.

(d) The potentials A(1) = A(2)∗ are defined by the cyclic rela-
tion (76) and extend outside the area of the solenoid because they are
components of a tetrad multiplied by the scalar A(0). The tetrad is the
metric tensor in differential geometry, so A(1) = A(2)∗ are properties of
non-Euclidean (i.e., spinning) spacetime. This spacetime, evidently, is
not restricted to the solenoid.

(e) The area Ar is the area enclosed [12] by the electron beams
of the Young interferometer.

The AB effect is therefore

∆Φ = exp

(
ie/~

∫
B(3) · kdAr

)
= exp(ie/~φ), (81)

where φ is the magnetic flux produced by the solenoid of magnetic flux
density B(3). The magnetic flux (weber = volts s−1) is B(3) (tesla)
multiplied by the area Ar enclosed by the electron beams.

The effect (81) is observed experimentally [12] as a shift in the
interferogram of the Young interferometer, a shift caused by the iron
whisker. It is seen that the AB effect is closely similar to the Sagnac
effect and to Michelson interferometry and reflection in physical optics.
All effects are described straightforwardly by the same phase law (76),
which is therefore verified with great precision in these experiments.
Recall that the MH, or U(1), phase factor (1) fails qualitatively in all
four experiments (Sec. 2).

When we use the correctly covariant phase law of general rel-
ativity, Eq. (76), the AB effect becomes a direct interaction of the
following potentials with the electron beam:

A(1) = A(2)∗ =
(
A(0)/

√
2
)

(i− ij)eiωt. (82)

These potentials define the static magnetic field of the iron whisker or
solenoid as follows:

B(3) = −igA(1) ×A(2), (83)
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where ω is an angular frequency defining the rate at which the poten-
tials spin around the Z axis of the solenoid. The potential

A(1) = A(2)∗ (84)

is defined completely by the scalar magnitude A(0), the frequency ω,
and the complex unit vectors

e(1) = e(2)∗. (85)

The magnitude of the static magnetic field is

B(0) = gA(0)2 (86)

and
B(3) = B(0)e(3), (87)

where
e(1) × e(2) = ie(3)∗ = ik, et cyclicum. (88)

Therefore the essence of the AB effect in general relativity is
that it is an effect of spinning spacetime itself, the spinning potential
A(1) = A(2)∗ extends outside the solenoid (to whose Z axis B(3) is
confined) and A(1) = A(2)∗ interacts directly with the electron beam,
giving the observed phase shift (81). The spin of the spacetime is
produced by the iron whisker, or static magnetic field. Conversely, a
static magnetic field is spacetime spin as measured by the torsion form
of the Evans theory [1-8] of generally covariant electrodynamics. This
theory completes the earlier theory of gravitation [9].

This explanation has the advantage of simplicity (Ockham Ra-
zor), and there is no need for the obscure, and mathematically incor-
rect, assumptions used in the received view of the AB effect (Sec. 2).
The explanation shows that the AB effect originates in general rela-
tivity with spin (the Evans unified field theory [1-8]). In analogy the
AB effect is a whirlpool effect, the whirlpool is created by a stirring
rod (the iron whisker) and the effect at the edges of the whirlpool is
evidently measurable even though the stirring rod is not present there.
The water of the whirlpool is the analogy to spinning spacetime. In
the same type of analogy the Sagnac effect is a rotational effect caused
by a physical rotation of the platform with respect to a fixed reference
frame, whereas in the AB effect the magnetic field is a rotation or spin
of spacetime (the reference frame itself). The Evans unified field the-
ory gives a quantitative explanation of these whirlpool effects with a
precision of up to 1 part on 1023 (contemporary ring laser gyro [11,13]).
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7. GAUGE INVARIANCE OF THE PHASE LAW (32)

Finally in this paper a brief discussion is given of the gauge invariance
of the generally covariant phase law (32). The Evans theory [1-8] is a
theory of general relativity, in which the base manifold is non-Euclidean
in nature, therefore covariant derivatives are always used from the out-
set instead of ordinary derivatives [9]. In both gravitation and elec-
trodynamics the use of a covariant derivative implies that the Evans
theory is intrinsically gauge invariant. The reason is that local gauge
invariance in relativity theory is defined as the replacement of the ordi-
nary derivative by a covariant derivative [12,13]. In the MH (or U(1))
electrodynamics, the covariant derivative is the result of a local gauge
transformation of the generic gauge field ψ, a transformation under
which the Lagrangian is invariant [12]. This local (or type two) gauge
transformation is defined only in special relativity (flat spacetime) in
MH theory and introduces the covariant derivative by changing the
ordinary derivative to the U(1) covariant derivative:

∂µ → ∂µ − igAµ. (89)

The introduction of the U(1) potential Aµ in this way is equivalent to
the well-known minimal prescription in the received view [12], and so
is equivalent to the interaction of field with matter (i.e., of Aµ with
e). The shortcomings of this point of view, i.e., of the MH theory,
are reviewed briefly in Sec. 2, and elsewhere [1-8,11]. One of several
problems with the received view is that Aµ itself is not gauge invariant
(i.e., assumed not to be a physical quantity), yet is used in the minimal
prescription to represent the physical electromagnetic field. The same
type of problem appears in the U(1) phase through the introduction
of the random factor α (Sec. 2). In consequence there has been a
long, confusing, and misleading debate within U(1) electrodynamics as
to whether or not Aµ is physical [13]. This type of debate has also
bedeviled the understanding of the AB effect.

In the Evans unified field theory the debate is resolved using
general relativity by recognising that Aa

µ is a tetrad and therefore an
element of a metric tensor in a spinning spacetime. The gauge invari-
ance of the Evans theory is evident through the fact that it always uses
covariant derivatives. In the language of differential geometry, this is
the covariant exterior derivative D∧ [9], without which the geometry
of spacetime is incorrectly defined. A magnetic field for example is
always (as we have seen) the covariant derivative of a potential form,
which is a vector valued one form. The correctly and generally covari-
ant magnetic field is therefore a vector valued two-form. The latter is
the torsion form of spacetime within a C negative scalar. This con-
cept is missing both from the Einstein theory of gravitation and the
MH theory of electrodynamics. It is the concept needed for a unified
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field theory of gravitation and electromagnetism in terms of general
relativity and differential geometry.

In this paper we have developed the unified field theory into a
novel phase law (32) that is gauge invariant and generally covariant.
The phase law gives the first correct description of physical optics,
interferometry, and related effects such as the Sagnac and AB effects. If
we use many loops of the Sagnac effect (11), we obtain the Tomita-Chao
effect; and applying the phase law (32) to matter waves, we obtain the
Berry phase effects. This will be the subject of future communications.
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APPENDIX: THE SAGNAC EFFECT AS A CHANGE IN
TETRAD

As argued in the text, the Sagnac effect is a change in frequency caused
by rotating the platform of the interferometer:

ω → ω ± Ω. (A1)

It is a shift in wave number:

κ→ κ± Ω/c (A2)

and thus in the following component of the potential:

A
(3)
Z → A

(3)
Z ± (Ω/ω)A

(3)
Z . (A3)

In the unified field theory,

Aa
µ = A(0)qa

µ, (A4)

and in the Sagnac effect is a shift in a tetrad component:

q
(3)
Z → (1± Ω/ω)q

(3)
Z (A5)

brought about by rotating the platform. The Sagnac effect is therefore
one of general relativity applied to physical optics, and so cannot be
explained by MH field theory, which is a theory of special relativity
and so metric invariant [13]. Recall that the tetrad is the equivalent
of the metric matrix in differential geometry. The components of the
tetrad in the Evans unified field theory are clearly not those of special
relativity.
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