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Abstract

The conservation theorems of physics are based on the tetrad postulate of dif-
ferential geometry. It is shown that the tetrad postulate is invariant under the
general coordinate transformation and that a frame invariant conservation
theorem of physics can be based directly on the invariant tetrad postulate of
geometry, as required by the philosophy of relativity. In special cases the con-
servation theorem reduces to the various conservation laws of physics, notably
the conservation of canonical energy/momentum density. The conservation
theorem and conservation laws apply to all the equations of physics deriv-
able from ECE field theory, these include the wave equations of physics, also
derivable from the tetrad postulate.

Keywords: Tetrad postulate, conservation theorem of ECE theory, conser-
vation laws of physics.

28.1 Introduction

In gauge theory the conservation laws of physics are based on the Noether
Theorem, which is derived from the invariance of action under various sym-
metry operations [1] in a Lagrangian formalism. These laws include the con-
servation of canonical energy momentum density, the covariant form of which
is used in the Einstein field equation. The latter is well known [2–10] to
be obsolete because of its neglect of space-time torsion, an essential part of



504 28 Conservation Theorem of Einstein Cartan Evans Field Theory

differential geometry, and has been replaced by the well accepted ECE engi-
neering model. The latter is based directly on Cartan’s differential geometry
both in respect of dynamics and electrodynamics, and the torsion plays a
central role in both subjects. The ECE model allows new technologies to be
developed using the concept of spin connection resonance (for example ECE
papers 63, 92, 94 and 107 on www.aias.us). The physics of ECE theory is
shown in Section 28.2 to be based on a general conservation theorem con-
structed in turn from the tetrad postulate [11] of differential geometry. The
tetrad postulate is the most fundamental theorem of differential geometry,
and states that the complete vector field is independent of its components
and basis elements. In three dimensions for example a complete vector field V
is the same if expressed in cartesian or circular polar coordinates. The same
is true of a complete vector field in n dimensions. The tetrad postulate is used
throughout differential geometry, and all the equations of Cartan geometry
depend on it. The postulate may be seen as the link between Cartan and
Riemann geometry. In view of its importance a proof of it is given in Section
28.2 with all details. In Section 28.3, it is shown that the tetrad postulate is
invariant under the general coordinate transformation, i.e. is frame invariant.
This property means that the postulate is the same for an observer moving
arbitrarily with respect to another. In Section 28.4 the fundamental conser-
vation theorem of ECE theory is based directly on the tetrad postulate, and
is developed to give the conservation laws and wave equations of physics. In
ECE theory the latter therefore obey the conservation laws by construction,
because in ECE theory the fundamental wave equations are derived from
the tetrad postulate by developing the latter into the ECE lemma and wave
equation [2–10].

28.2 Proof of the Tetrad Postulate

Consider the complete vector field X in n dimensions and in a space-time with
torsion and curvature. Denote the covariant derivative of the compete vector
field by DX. In Riemannian geometry this quantity is expressed as [2–11]:

DX = DµXνdxµ ⊗ ∂ν (28.1)

where Xν are the components of X,Dµ are the components of D, dxµ are
the basis elements of X, and ∂ν are the basis elements of Xν . The covariant
derivative is defined as:

DµXν = ∂µXν + Γν
µλXλ (28.2)

where Γν
µλ is the connection. Therefore:

DX = (∂µXν + Γν
µλXλ)dxµ ⊗ ∂ν . (28.3)
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In Cartan geometry a tangent Minkowski space-time is defined at point P to
the base manifold and the covariant derivative is defined in terms of the spin
connection ωa

µb:

DµXa = ∂µXa + ωa
µbX

b. (28.4)

The quantity DX is the same in Riemannian and Cartan geometry, so:

DX = (∂µXa + ωa
µbX

b)dxµ ⊗ êa (28.5)

where êa is the basis element of the component Xa. By construction:

êa = qσ
a∂σ (28.6)

Xa = qa
νXν (28.7)

where qa
ν is the Cartan tetrad [2–11] and where qσ

a is the inverse tetrad. These
are related by:

qσ
a qa

ν = δσ
ν (28.8)

where:

δσ
ν = 1, σ = ν, (28.9)

δσ
ν = 0, σ �= ν. (28.10)

Note carefully that by convention, there is no summation over repeated a
indices in Eq. (28.8), the notation of which means that when:

σ = ν (28.11)

then:

qσ
a qa

σ = 1. (28.12)

using Eqs. (28.6) and (28.7) in Eq. (28.5):

DX = (∂µ(qa
νXν) + ωa

µbq
b
νXν)dxµ ⊗ (qσ

a ∂σ) (28.13)
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which may be re-expressed as:

DX = (qσ
a qa

ν∂µXν + qσ
aXν∂µqa

ν + qσ
aωa

µbq
b
λXλ)dxµ ⊗ ∂σ (28.14)

Now compare Eqs. (28.3) and (28.14) when:

σ = ν. (28.15)

In this case, using Eq. (28.12), Eq. (28.14) becomes:

DX = (∂µXν + qν
a Xλ ∂µ qa

λ + qν
a ωa

µb qb
λ Xλ)dxµ ⊗ ∂ν . (28.16)

Therefore we obtain:

Γν
µλ = qν

a∂µqa
λ + qν

aωa
µbq

b
λ. (28.17)

Multiply both sides of Eq. (28.17) by qa
λ to find:

∂µqa
λ + ωa

µbq
b
λ = qa

νΓν
µλ (28.18)

i.e.:

∂µqa
λ + ωa

µbq
b
λ − qa

νΓν
µλ = 0. (28.19)

Using the rule [2–11] for the covariant derivative of the tetrad, a rank two
mixed-index tensor, Eq. (28.19) is:

Dµqa
λ = 0 (28.20)

which is the tetrad postulate Q.E.D.

28.3 Invariance of the Tetrad Postulate

In this section the tetrad postulate is subjected to a well defined general
coordinate transformation [2–11]. The fundamental idea of relativity theory
is that the equations of physics retain their format under the general coordi-
nate transformation. They must be generally covariant. In Riemann geometry
there are base manifold indices (labelled by Greek subscripts and super-
scripts), and in Cartan geometry there are additional Latin indices of the
tangent space-time. So in Cartan geometry the general coordinate transfor-
mation consists in general of transformation matrices with base manifold and
tangent indices [2–11]. The transformation matrix in the tangent space-time
is the Lorentz transformation matrix Λa′

a . In the base manifold there occur
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transformation matrices such as ∂xµ/∂xµ′
. Therefore Eq. (28.20) transforms

according to the rule for the coordinate transformation of a rank three mixed
index tensor:

(Dµqa
ν )′ =

(
Λa′

a

∂xµ

∂xµ′
∂xν

∂xν′

)
Dµqa

ν = 0 (28.21)

It follows that the tetrad postulate is true in any frame of reference, and is
an invariant under the general coordinate transformation, Q.E.D.

28.4 Conservation Theorem of ECE Theory

For practical applications the tetrad postulate is developed in the base man-
ifold using Eq. (28.8). Therefore:

qµ
ν = δµ

ν (28.22)

in the base manifold. The contravariant and covariant form of Eq. (28.22) are
obtained using the inverse metric and metric respectively, to give:

qµν = gµσδν
σ = gµν , (28.23)

qµν = gµν . (28.24)

The general conditions of metric compatibility [2–11] follow:

Dσgµν = 0, (28.25)

Dσgµν = 0, (28.26)

and these are forms of the ECE conservation theorem. The fundamental and
most general conservation theorem of ECE theory is therefore the tetrad
postulate itself.

The conservation of canonical energy momentum density used in the
Einstein field equation is derived as a special case of Eq. (28.25) when:

σ = µ. (28.27)

In general, the canonical energy momentum density is defined in ECE theory
as:

T a
µ = T (0)qa

µ (28.28)
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so using Eq. (28.25):

DµTµν = 0. (28.29)

This is the covariant law for conservation of energy momentum density which
is obtainable from the invariance of action under space-time translation in the
Noether Theorem formalism [1]. In ECE theory it is derived straightforwardly
from geometry. During the course of development of ECE theory it has been
proven rigorously [2–10] that the tetrad postulate may be developed into the
ECE Lemma:

�qa
µ = Rqa

µ (28.30)

where R is a well defined scalar eigen-value with the units of curvature
(inverse square metres). Therefore the general law for conservation of canon-
ical energy - momentum density is also a wave equation:

�T a
µ = RT a

µ (28.31)

This may be a wave equation of quantum mechanics or statistical mechanics.
It follows that all process of quantum mechanics and statistical mechanics in
ECE theory automatically obey all the conservation theorems of physics.

The law of conservation of canonical angular energy momentum density
follows from the definition [1–10]:

Jκµν = −1
2
(Tκµxν − Tκνxµ) (28.32)

which is a rank three tensor density in the base manifold. The space-time
torsion tensor in the base manifold [2–11] is also a rank three tensor related
to a curvature tensor through the Cartan Evans dual identity:

DµTκµν = Rκ
µ

µν . (28.33)

By index contraction (summation over internal indices), a rank two curvature
tensor may be defined as follows:

Rκν = Rκ
µ

µν (28.34)

and by hypothesis similar to that of Einstein this tensor is made proportional
to the rank two canonical energy momentum density tensor through Einstein’s
constant k :

Rκν = kTκν = DµTκµν . (28.35)
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By similar hypothesis:

Tκµν = kJκµν (28.36)

so we obtain:

DµJκµν = Tκν . (28.37)

This is a field equation that automatically includes a non-zero torsion as
required by the dual identity (28.33) [2–10]. It follows that the law for con-
servation of canonical angular energy momentum density is:

DµTµν = Dµ(DκJµκν) = 0. (28.38)

Similarly the charge current density in general is defined as:

Ja
µ = J (0)qa

µ (28.39)

and leads to the covariant continuity equation:

DµJµν = 0 (28.40)

(see also paper 116 of www.aias.us). Finally the fundamental hypothesis lead-
ing to the equations of classical dynamics in ECE tehory [2–10] is:

Aa
µ = A(0)qa

µ (28.41)

where Aa
µ is the electromagnetic potential field. It follows that the electro-

magnetic potential in the base manifold is the metric within a factor A(0),
where cA(0) is the primordial voltage of ECE theory [2–10]. The electromag-
netic field tensor in ECE theory is a rank three tensor proportional to the
space-time torsion, so from Cartan’s structure equation:

Fκµν = ∂µAκµ − ∂νAκµ + ωκµ
λAλν − ωκν

λAλµ. (28.42)

For example, the electric field in Coulomb’s law [2–10] is:

E = E010i + E020j + E030k (28.43)

in the Cartesian basis. Each electric field component is a component of orbital
torsion, and in general:

F 010 = ∂1A00 − ∂0A01 + ω01
λAλ0 − ω00

λAλ1 (28.44)
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where there is summation over repeated λ indices. Therefore the compo-
nents of the potential tensor appearing in Eq. (28.44) are components of the
inverse metric tensor in a space-time with both curvature an torsion present
in general:

Aµν = A(0)gµν . (28.45)

In vector format, Eq. (28.44) reduces to:

E = −∇φ − ∂A

∂t
+ φω − ωA. (28.46)

where ω is the spin connection scalar and ω is the spin connection vector.
The Coulomb law itself reduces to:

∇ · E = ρ/ε0 (28.47)

and Eqs. (28.46) and (28.47) give rise to spin connection resonance [2–10]. It
is seen that this process obeys the conservation theorems of physics. The same
is true for the other ECE equations of classical electrodynamics, and for all
the ECE equations of classical dynamics. The same is also true for the ECE
equations of wave mechanics and statistical mechanics. At spin connection
resonance the primordial voltage cA(0) (which fills the vacuum in ECE theory
and which is observable in the well known radiative corrections) is greatly
amplified, giving rise to the possibility of electric power from space-time. This
process obeys all the conservation theorems of physics.
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