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The well known radiative correction is amplified by spin connection resonance, 
whereby the initially Coulombic potential in an easily ionized material is 
amplified to the point where electrons are released for use in circuits, energy 
production and energy savings. It is assumed that the radiative correction can 
be represented by an oscillating part of the fine structure constant. The methods 
of Einstein–Cartan–Evans (ECE) field theory are used to amplify the induced 
jitterbugging of the electron in each orbital that is the primary characteristic 
of the radiative correction. The latter is observed in well known phenomena 
such as the electron g factor, the Lamb shift and the Casimir effect. It is 
shown that the initially small radiative correction can be amplified for practical 
implementation.
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1 Introduction

Recently the Einstein–Cartan–Evans (ECE) field theory has offered a gener ally 
covariant unified field theory based on the principles of relativity - that physics 
is objective and causal [1-11]. Relativity is the most precise theory of physics. 
Electrodynamics and quantum mechanics have been forged together with gravitation 
and the other fundamental force fields in one theoretical framework based on 
Cartan geometry [12]. With these developments came the realization that the 
spin connection of space-time plays a central role in electrodynamics, which in 
ECE is considered to be a theory of general relativ ity, not of special relativity. 
1e-mail: EMyrone@aol.com
2e-mail: horsteck@aol.com
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It has been shown [11] that the spin connection can produce amplification of 
gravitational effects, an amplification which may be used in counter-gravitational 
devices. In the field of electrodynamics it has been shown [1-11] that the spin 
connection may be used to amplify the repulsion between electrons in an atom 
or molecule to the point at which the electrons are freed from the nucleus and 
may be used in circuits to produce power or save power. Recently, it has been 
shown [1-11] that the Lamb shift may be explained within experimental precision 
by using an average effect of the ubiquitous zero'th eigenstate of the quantized 
electromagnetic field ("zero point energy") to describe the well known [13, 14] 
radiative correction. The Lamb shift has been described in ECE theory in a 
manner that is consistent with the description of the g factor of the electron in 
earlier work [1-11].

In Section 2 the radiative correction in the hydrogen atom is considered 
to arise from an oscillating component of the averaged radiative correction 
used in previous work [1-11]. The Lamb shift is illustrated in atomic hydro-
gen for this type of radiative correction. The charge density in each orbital 
is calculated for each orbital. In Section 3 these charge densities are used in 
the generally covariant Coulomb law of ECE theory and it is shown that the 
radiative correction in each orbital of atomic hydrogen can be amplified by spin 
connection resonance to the point at which the electron breaks free from the 
proton and may be used in a circuit to produce power. This pro cess is known 
as "energy from space-time". This paper therefore identifies the driving term of 
the spin connection resonance mechanism as the radiative cor rection. The latter 
causes zwitterbewegung, the well known [15] jitterbugging of the electron in each 
orbital due to the ubiquitous, background, radiative correction. The latter is due 
to the fact that in the quantized electromag netic field surrounding the atom, there 
are ever present and ever oscillating electric and magnetic fields. In the zero'th 
eigenstate of the quantized, back ground, electromagnetic field these electric and 
magnetic fluctuations exist when there are no photons [15] present, the photon 
being defined as the quan tum of energy. The electromagnetic potential due to 
these fluctuating electric and magnetic fields produces well known phenomena 
such as the g factor of the electron and other particles, the Lamb shift, and the 
Casimir effect. These are examples of the ways in which the radiative correction 
is observed experimentally. No energy is required to manufacture the potential 
of the radiative correction, which is therefore like an enormous natural reservoir 
of energy, one which is ever present. The natural effect of the radiative correc-
tion is very small (about four parts in ten million for atomic hydrogen), but in 
ECE theory (generally covariant unified field theory) it may be amplified by 
spin connection resonance [1-11]. In Section 4 the results of Sections 2 and 3 
are developed numerically, and in Section 5 a discussion is given of the type of 
material most likely to release electrons through the theory of this paper. The 
hydrogen atom is used as a model for future work based on density functional 
code in solids.
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2 Radiative correction in the hydrogen atom

In previous work on the electron g factor and Lamb shift [1-11] the mean value 
of the radiative correction was implemented as follows:
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where g is the electron g factor, and where α is the fine structure constant. 
Eq. (1) was used with the Dirac equation derived from the ECE wave equation, 
and Eq. (2) was used with the Schrödinger equation. In order to model the 
jitterbugging of the electron it is assumed that:

( )( )1 cos rα = α + κ   (3)

where k is a characteristic wave-number of the jitterbugging and where r is the 
radial coordinate [1-11]. The jitterbugging is therefore the initially small driving 
term of the spin connection resonance (SCR) mechanism of previous work [1-
11]. The hydrogen atom is used to model the effect of Eq. (3) on each orbital.

To first order in α:
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and the Schrödinger equation of atomic hydrogen becomes:
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is the initially Coulombic attraction between the proton and electron. The effect 
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of SCR is to amplify this attraction into a strong repulsion which allows the 
electron to break free from the proton. In Eq. (5), Ψ is the wave-function and 
E is the total energy [15]. In Eq. (6), e is the charge on the proton (minus the 
charge on the electron), and 0 is the vacuum permittivity in S.I. units [15].
It is well known [15] that Eq. (5) can be developed into:
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where:

( ) ( ).P r rR r=   (8)

Here R is the radial wave-function of the hydrogen atom. The potential energy
in Eq. (7) is
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where l is the angular momentum quantum number, m is the mass of the elec tron 
and ħ is the reduced Planck constant. The positive term in Eq. (9) is the well 
known centrifugal repulsion term in atomic hydrogen [15]. Using pre vious work 
[1-11] on the Lamb shift in atomic hydrogen and helium, Eq. (7) is re-written as:
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Here r(vac) is a radial adjustment due to the radiative correction. It is dif-
ferent for each orbital and can be calculated by subtracting Eq. (10) from Eq. 
(7), giving:
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The known hydrogenic P may be used in Eq. (12) to compute r(vac) using 
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computer algebra. This assumption is based on the experimental fact that the 
Lamb shift for atomic H splits the 2s and 2p levels by about four parts in ten 
million, so the hydrogenic wave-functions are only slightly affected. In previous 
work the experimentally measured Lamb shift was explained in terms of an 
average r(vac) for the hydrogen and helium atoms. More accurately, as in this 
paper, r(vac) oscillates from Eq. (3), i.e. the electron jitterbugs in each orbital. 
The jitterbugging is the phenomenon used to build up the driving term of the 
SCR mechanism.

To construct the driving term, the charge density ρ in each orbital must be 

calculated, the driving term is then 
0

ρ
−


 .In order to calculate ρ, it is necessary 

to calculate the probability of finding the electron in a volume element dr at 
some point (r,θ,Φ) in spherical polar coordinates [15]. This probability is:

( ) 2
, , .ed r dρ = Ψ θ φ τ  (13)

The volume element is:

2 sin .d r dr d dτ = θ θ φ  (14)

The probability of finding the electron in a spherical shell of thickness dr and 
radius r is the sum over these probabilities [15] as θ and Φ move over the range:

0 , 0 2 .≤ θ ≤ π ≤ φ ≤ π  (15)

This sum is:
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However, the P function of Eq. (7) depends only on r, so the summed 
probability is:

24 .eP r P= π   (17)

If we consider the probability to be determined by R itself, rather than P, then 
the summed probability is:

24 .eP r R= π  (18)

The use of Eq. (17) or (18) is a matter of choice. If we choose Eq. (18) and 
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normalize the summed probability to be unit-less by use of the Bohr radius a0 
[15] we obtain:
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This expression has assumed that R is hydrogenic, and unaffected by r(vac), 
so the latter appears only in the pre-multiplying factor. This is an approxima tion, 
but in the hydrogen atom an excellent approximation. In other materials it may 
not be as good an approximation, and Eq. (5) would have to be solved directly 
with density functional code or another suitable numerical method. Finally the 
charge density of each orbital is defined to be:
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where Ve is an effective volume for each orbital. If a spherical volume is assumed:

34
3e eV r= π

 
 (21)

where re is the mean radius of each orbital.

3	 SCR	Amplification	mechanism

This mechanism [1–11] is based on a simplified definition of the electric field 
in ECE theory:

( )= − + ω φ∇E   (22)

where ω is the spin connection vector and f is the scalar potential. A simpli-
fied form of the Coulomb law of ECE theory is used. This happens to have the 
same mathematical form as the Coulomb law of the Maxwell–Heaviside theory:

0
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The spin connection is assumed to be [1-11]:
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These equations give:
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This equation was transformed into an undamped oscillator equation:
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using the Euler transform [16]:

( )0 0exp .r i Rκ = κ  (27)

Eq (17 26) was used to produce a Fourier analysis [1-11] for an assumed 
cosinal driving term (right hand side of Eq (17 26)), and an equivalent cir cuit was 
designed. Resonant amplification of Φ was shown to occur, and this phenomenon 
was studied in atomic hydrogen [1-11] It was shown that the SCR mechanism 
can ionize the hydrogen atom and that the electron thus released could be used 
to produce electric power. In this section the driving term of Eq. (20) is used 
in Eq. (25) so that the overall process is shown to be the SCR amplification of 
the radiative correction.

If the Euler transform method is used, the mathematical problem to be solved 
is therefore as follows:
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( )( )1 cos .rα = α + κ  (31)

However, Eq. (25) can be solved directly by computer and this method is 
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considered in a later article.

4 Numerical development and circuit designs

In the following section we discuss results wich have been obtained by analyt-
ical and numerical studies. First we compare the description of the radiative 
corrections with the Spin Connection Resonance (SCR) mechanism derived
in [17].

4.1 Parameter studies

From Eqs. (9, 11, 12) the impact of the fine structure constant a on hydrogenic 
spectra can be described by the equation
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If we describe this potential energy difference by a single SCR potential Φ. 
we have to replace

( )0
eff eff SCRV V V− →   (35)

and define

SCR .V e= − Φ  (36)

The sign was chosen so that a positive contribution of the potential energy is 
obtained for high values of Φ. In this way we arrive at the expression
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That this expression makes sense can be seen from considering the limits of 
vanishing or infiite vacuum interaction, expressed by r(vac):

( )vac 0 0r e→ ⇒ Φ→  (38a)

( ) ( )0
effvac .r e V→∞⇒ Φ→−  (38b)

In the maximum case the SCR potential cancels out the atomic effective 
potential energy so that Eq. (10) becomes identical to that of a free parti cle. In 
general Φ is orbital dependent as was also found in [17] by numerical studies.

In Eq.(37) we have three parameters being of principal interest: Φ,r, and 
r(vac). In the first three Figures we present the dependence of Φ on r(vac) for 
fixed r values. Near to the atomic core (Fig. 1, r = 0.1; all quantitites given in 
atomic units) only the s orbitals (l = 0) lead to a positive SRC potential, for 
other orbitals the interaction gives a decrease in potential energy which counter-
acts a resonance effect. From our earlier studies [18] we know that the vacuum 
interaction is much smaller then so that a positive SCR effect results. The same 
holds for a radius in the valence region (r = 1, Fig. 2). In the outer atomic 
region (r = 5, Fig. 3) all contributions become positive, but small. A surface 
plot Φ(r(vac),r) for angular momentum quantum number l = 0 is presented in 
Fig. 4. Positive values of Φ are generally obtained for small radii r.

The Figures 5-7 show the dependence of r(vac) from Φ, again for three fixed 
radii r. There is a pole in r(vac) which moves in direction of Φ = 0 for increasing 
r. Left-hand of the pole we have positive r(vac) values for l = 0 which show 
some kind of resonance enhancement when approaching the pole.

From the surface plot (Fig. 8) we see that such an enhancement only takes 
place in a small band of the r–Φ plane.

4.2 Oscillatory r(vac)

The results so far were obtained for a non-oscillatory r(vac). Next we use the 
oscillatory model (3) of the fine structure constant. According to Eq.(12) we 
have to solve
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Fig. 1. $(r(vac)) for fixed r = 0.1.

Fig. 2. $(r(vac)) for fixed r = 1.
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Fig. 3. $(r(vac)) for fixed r

Fig. 4. Surface plot $(r(vac),r) for angular momentum quantum number l = 0.
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Fig. 5. r(vac)($) for fixed r = 0.1.

Fig. 6. r(vac)($) for fixed r = 1.
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Fig. 7. r(vac)($) for fixed r = 5.

Fig. 8. Surface plot r(vac)($,r) for angular momentum quantum number l = 0.
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eff eff2 2
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π
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for the variable r(vac). Using computer algebra [19] this gives a complicated 
rational function of order 3 in r. In (39) we replace furthermore

( )( )1 cos rα = α + κ  (40)

with

0.007297α =  (41)

obtaining a solution of (39) which is dependent on a wave number K. For P(r) 
we choose the undisturbed radial functions of the hydrogen atom. Since P(r) 
depends on the quantum number l, this dependence propagates into the solution of 
(39). The result for three l values is graphed in Fig. 9. r(vac) for the 1s orbital 
strongly oscillates for large radii, but this is in a region where the probability 
density is very small.

Having obtained the function r(vac) (κ, r), we can proceed now with solv ing 

Fig. 9. Oscillating r(vac) for three orbitals of H for κ = 8.
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the resonace equation (25). This equation has been transformed into an oscillator 
equation without damping (26) as was originally described in [17]. The radial 
coordinate r has been transformed to another coordinate R as given by (27). 
Therefore we must transform the function r(vac)(r) to r(vac)(R) to be able to 
use it for the driving charge density ρ(R) at the right-hand side. Unfortunately 
Eq.(27) is periodic in R and restricted in range. We can construct a bijective 
mapping for the whole r range by taking the real part of (27) in the form

( )0 0cos 2r R nκ = κ ± π  (42)

with an integer n. The inverse transformation then is

( )( )0
0

1 cos 2 .R a r n= κ ± π
κ  

(43)

We use this equation to calculate the requested function r(vac)(R). Choosing 
n in a suitable way, we obtain the behaviour as shown in Fig. 10 where R 
is continuously defined over the full range of r. The oscillation of a leads 
to the behaviour shown in Fig. 11 for r(vac) of the 2s orbital. The nonlinear 
transformation (43) infers the crookbacked form.

Fig. 10. Radius back transformation r(R).
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4.3 Resonance

Now we have all elements available to set up Eq. (28) and to construct a 
numerical solution. By means of Eqs. (19, 20) we have

( ) ( )( ) ( )2 2vac lr A r r R rρ = +  (44)

with a normalization factor A which is computed numerically; R;(r) is the radial 
wave function of hydrogen. We transform ρ(r) to ρ(R) by defining a uniform R 
grid and back-transforming it to an r grid according to (42). Since ρ(r) is given 
analytically, we can evaluate it on the non-uniform r grid without problems. We 
can solve now

( )
2

02

d f R
dR
Φ
+ κ Φ =

 
(45)

with

( ) ( ) ( )0
0

cos 2 .
R

f R R
ρ

= κ
ε  

(46)

Fig. 11. Oscillating vacuum radius r(vac)(R) of the 2s orbital for three wave numbers (2.5, 5, 10).
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In order to obtain resonances in the solution, we had to make two modi fications: 
The relative strength of r(vac) in Eq. (44) had to be enhanced by a factor of 
1000 and the driving force (46) had to be enhanced by the same factor as well. 
While the latter is an uncritical operation due to the unspecified normalization 
factor in (44), The enhancement of r(vac) can be made plausible by the following: 
This calculation is restricted to a single atom where ρ(R) is constrained to a few 
Bohr radii. In an atomic lattice of a solid, the excitation goes over many atoms 
where resonance can enhance this in a nearly unbound spatial region. Therefore 
it may be justified to enlarge r(vac) in this model calculation. As an additional 
approximation we identify the two wave numbers κ and κ0 in Eqs. (40) and (46) 
as we did in earlier SCR calculations [17].

The driving charge density thus enhanced is graphed in Fig. 12. The two 
maxima of the atomic 2s distribution are still visible, strongly superimposed 
with oscillations. The total driving force is shown in Fig. 13. The zero at                                  
R = 3 is propagated from the zero in Fig. 12. Finally we present the numerical 
solution Φ(R) in Fig. 14. One can see that there is a resonance for the second 
wave number κ = 5. Since f (R) is restricted in space, the resonance does not 
grow further outside the "definition volume". This behaviour reflects the above 
discussion about the restrictions of the model.

The resonance behaviour is clearly seen from the resonance diagram, Fig. 15. 
The maximum of the amplitude taken over 15 wave lengths is plotted. The main 
peak is at half the frequency of a pure cosine driving force cos(κ0r), and there 
are several secondary maxima visible. The structure is somewhat richer than for 

Fig. 12. Charge density of driving charge density p(R) equation for three wave numbers (2.5, 5, 10).
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the earlier SCR calculation [17], but has the feature of the halved resonance 
frequency in common with it.

4.4 Relation to circuits and SCR applications

To some it may seem that Spin Connection Resonance (SCR - as developed in 

Fig. 13. Driving force f (R) for for three wave numbers (2.5, 5, 10).

Fig. 14. Solution of $(R) of Euler transformed equation for three wave numbers (2.5, 5, 10).
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this series of papers) suggests that a vast and renewable source of energy is 
available from nowhere violating the conservation of energy and momentum, 
but this is not the case. Spin Connection Resonance is a resonance of General 
Rel ativity that fully conserves energy momentum as rigorously established in 
this series of papers. The overall mechanism is one in which the well known 
radia tive correction (Lamb 1946, Bethe 1947) is amplified by Spin Connection 
Res onance. The resonances are caused by amplification of the ubiquitous electric 
and magnetic fields that are responsible for the well observed radiative correc-
tion. The amplification is controlled by an undamped resonance equation. The 
driving term comes from a solution of the Schrödinger equation with radiative 
correction. The resonance equation can be used to design a circuit.

The resonance equation (45/46) can technically be realized by an equiv alent 
circuit as already described in detail in [17]. The driving force has to be provided 
electrically. This force is characterized by its Fourier spectrum. However, we 
do not have a continuously periodic function as in [17] since one single atom 
which is considered in our model is not a periodic structure. Therefore we choose 
the usual proceeding in such cases: we cut the function f (R) at an appropriate 
radius (here R = 15) and assume periodicity with a wavelength of λ = 15. For 
each given k we obtain separate functions f (R, κ), and consequently different 
Fourier spectra for each k value. These are shown in Fig. 16 for the three k 
values investigated. The structures are similar but shifted in frequency. This 
means that there is a common pattern in the structure of the driving force. This 
could be like a "fingerprint" for a certain atomic structure.

Another type of SCR devices are the various types of Bedini motors, or more 

Fig.   15. Resonance diagram, max. amplitude after 15 wavelengths 
2 .πλ =
κ
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precisely, motor-generators [20]. According to the block diagram of Fig. 17, they 
consist of a motor part, a generator part, and a control circuit. The generator 
part which takes up the potential from spacetime is a series resonance circuit 
as can be seen from the diagram. The motor and the control part are there to 
generate a suitable form of the driving force and are coupled inductively. We 
must restrict comparison to this logical level. It should become clear that the 
functioning of the Bedini motor-generator is based on the principle that we have 
derived from the equivalent circuit. A more direct application of the mechanisms 
can take place in solid state chemistry as is discussed in the next section.

It has been suggested [21] that the Bedini–Cole device seems to meet the basic 
requirements of a SCR design that can be used for space energy utilization. The 
"driving force" in this device is a voltage spike produced by a collapsing magnetic 
field on a coil. A well defined resonance condition is generated by the voltage 
spike. An ionic electrolyte solution of a storage battery is used as the source 
of electrons (and not a metal as suggested below). Details of this device need 
to be investigated further within the ECE framework developed in this paper.

5 Discussion of materials being suited for SCR

There are a number of claims in the literature, dating back to Tesla at the end of 
the twentieth century (more recently developed by Horta) that seem to support the 
principle of Spin Connection Resonance (and the availability of Space Energy). 
The reports of resonances that led to paper 63 in this current series were based 
on the resonance work of Tesla. Bedini has reported the development of devices 
that may be utlising Space Energy and Grabiel's Kron's work on motors is 

Fig. 16. Fourier transform of driving force for three wave numbers (2.5, 5, 10).
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another interesting line of interesting research in this context. Kron's electrical 
circuits seem to offer the prospect of working backwards from a well designed 
engineers' circuit to SCR equations.

When a working circuit is available it can be analysed with ECE theory to 
find its equivalent resonance equation, spin connection and driving term. The 
latter is traced back to jitterbugging of the electron in an orbital (the radiative 
correction of Lamb and Bethe).

The alternative approach is to develop new circuits from SCR equations of 
various kinds and develop working devices from first theoretical principles. Circuit 
diagrams can in principle be constructed for different types of driving forces 
and then compared, where available and appropriate, with circuits of reported 
working devices (to optimise and "fine tune" them).

Numerical solutions for the Euler transformed resonance equation dis cussed 
above indicate that resonances are obtained but only over many atoms in a solid. 
The solutions also suggest that not every possible form of oscil lating driving 
force gives a resonance. This needs to be developed and better understood. The 
solutions suggest that metals with s valence states may be particularly suited for 
SCR. They show that the radiative correction can be amplified to ionise the s 
electron of valence one metals, for example, or Any compound in which there is 
an ns valence electron loosely bound to the nucleus (that can be "easily" ionised 
into a free electron to produce an electric current).

This suggests that attention should be focused, in these early stages of 
development, on materials with low Work Functions (Φ) in the solid state for 
their potential use in designing new circuits. Density functional code could be 
used to produce the work function of solids from quantum mechanics. The effect 

Fig.  17. Block diagram of Bedini motor-generator.
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of the amplified Lamb shift could then be computed to see the effect on the 
material with the lowest work function. The important point is that the driving 
force can initially be very small (the radiative correction is very small) but can 
be amplified by an Euler Bernoulli resonance equation. The Lamb shift is in 
effect the driving force and resonant amplification of the radiative correction 
occurs through the spin connection of unified field theory as discussed above.

5.1 Materials that could be considered in device development

The well known work function (Φ) is the measure of the energy required to 
extract an electron from a solid – from the highest filled level in the Fermi 
distribution of a solid.

Thermionic

Richardson's equation gives an estimate of the work function:

( )2 exp /I AT kT= −φ  (47)

where I is the thermionic current, T the absolute temperature, k is Boltz-mann's 
constant and A is a constant (having a theoretical value 120 amp cm-2 deg-2).

Photoelectric

The work function can be estimated photoelectrically for metals. Einstein's 
expression for the photoelectric effect is hv = ef + E, where E is the kinetic 
energy of the ejected photoelectron. The photoelectric current J released when light 
of energy hv falls on the surface of a metal, for which the threshold frequency 
is given by hv0 = ef (for then E = 0), is given by the Fowler equation

( ) ( )02 hv hv
J B kT f

kT
 − 

= ⋅  
   

(48)

where f is a universal function of ( )0hv hv
kT
−  and B is constant provided that hv 

is near to hv0.

Contact potential difference (CPD)

The work function can also be estimated by the contact potential difference 
(c.p.d.) VAB that exists between the surfaces of two solids A and B of work 
functions Φ

a
 and Φ

b
, when connected electrically, since
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B A ABeVφ − φ =  (49)

for the two solids at the same temperature. The method involves a prior knowledge 
of the work function of one of the solids if that of the other is to be measured 
absolutely.
Electric field emission

A fourth method involves the field emission of electrons when an external electric 
field F is applied.

Adsorbates or contaminants will usually reduce the measured f and differ ent 
crystal faces of the same material may have different values of f. "Doping" also 
reduces the work functions of metals. A table of Work Functions for metals is 
reproduced below (taken from [22]).

It can be seen that the metal caesium has the lowest work function. If we 
consider this metal as an example for potential use in the design of a SCR 
circuit, there are two well documented resonance effects in this metal:

a) Photoelectric effect

As a photosensitor, caesium has a peak response at 800nm in the infrared, 
both thermal and photoemission of electrons is very high because of the low 
work function. Caesium is a very reactive metal and is only naturally occur ring 
in relatively small amounts. Alloys of Caesium (with antimony, gallium, indium, 
and thorium for example) are all generally photosernsitive and may be more 
stable and useful for device experimentation.

b) Caesium ion resonance
Caesium is also used as an atomic clock, a standard measure of time, based 

on the caesium ion resonance of 9,192,631,770Hz.
It would be interesting to try to reproduce these resonances with density 

functional code and to amplify them with a circuit based on the resonance 
equations developed in this paper.

Other lessreactive and more stable metals and materials with low work functions 
also need to be investigated. Diamond, for example, is one of the few materials 
with a known negative work function.

5.2 Small initial driving forces

The driving forces used to stimulate resonances could be electric, magnetic, 
electromagnetic or a combination of two or all three but numerical solutions of 
the equations seem to suggest that not every possible form of oscillating driving 
force gives a resonance and this needs to be fully understood and developed. To 
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reiterate, the initial driving force can may be very small the radiative correction 
is very small) but this can be amplified by an Euler–Bernoulli resonance equation.

It is well known that metals CAN be stimulated with electromagnetic fields 
to release electrons – the photoelectric effect. It is also well known that electric 
fields can be used to stimulate metals to release electrons – field emission. Using 
a magnetic field (or a combination of fields) as a small initial "driving force" 
to release electrons is interesting. In general all emissions can be enhanced by 
finely tuning a circuit designed from the SCR equations developed in this paper.

In concluding, we set out in this paper the factors that emerge from the 
ECE theoretical framework that control the development of SCR devices. The 
theory and its solutions is available as a guide for designing new devices and 
for working backwards from any existing device to optimize and fine tune its 

Table 1 Work functions of metals.

Metal Work function φ/eV Metal Work function φ/eV
Photoelectric C.P.D. Thermionic Photoelectric C.P.D.

Li . . . — 2.32 Nb .. . 4.30 — 4.37
Na ... 2.36 2.46 Mo . . . 4.33 4.49 4.21
K.. . 2.30 2.01 Ta . .. 4.33 4.30 4.22

Rb .. . 2.05 — W. .. 4.55 4.55 4.55
Cs . . . 1.95 1.82 Re . . . 4.72 — —
Be . . . — 3.91 Ti .. . 4.10 4.33 4.20
Mg ... — 3.61 Cr . . . 4.60 4.44 —
Ca . . . 2.87 — Mn ... — 4.08 —
Ba . . . 2.52 2.35 Fe . . . — 4.60 4.16

Co . . . — 4.97 —
Zn . . . 3.63 4.11 Ni . . . 5.24 5.15 5.25
Cd ... — 4.22

Zr . . . 4.00 — —
Al . . . 4.28 4.19 Hf .. . 3.65 — —
Ga . . . 4.35 —
In ... 4.08 — Ru ... — 4.71 4.73

Rh ... 4.72 — —
Sn ... 4.28 4.43 Pd .. . — 5.40 —
Pb . . . 4.25 3.83 Ir .. . 4.57 — —

Pt . . . 5.36 5.63 —
Cu ... 4.65 4.51
Ag ... 4.26 4.29 Th . . . — — 3.71
Au . . . 5.10 5.28 U ... 3.47 3.47 3.63

As . . . 4.79 — C (dag) . .. — — 4.65-5.0
Sb ... 4.56 — Si ... — 4.95 4.75
Bi . . . 4.34 — Ge . . . — 5.15 4.83
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performance. The theory can be used as a guide for the types of material that 
may be of interest (doped materials, semi conductors, and superconductors, as 
well as nS valence metals, spring to mind). We should be thinking in terms of 
circuits developed from the Euler equations and then experimenting with different 
driving forces. When we have an appropriate circuit and material we need to 
experiment to find and optimize a resonance (a spike of voltage from a small 
input) and use ECE theory to fully understand and develop what is taking place.

In summary:
1) Resonances - arise from amplification of magnetic and electric fields that 

are responsible for the radiative correction.
2) Amplification - is controlled by an undamped resonance equation.
3) Driving Term - comes from a solution of the Schrödinger equation with 

radiative correction.
4) Circuits - can be designed from the resonance equation.
5) Optimum Materials - seem to be solids that ionize readily (but semi conductor 

and superconducting materials also spring to mind).
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