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Abstract

Spin connection resonance (SCR) is used to explain theoretically why devices
in electrical engineering can use the properties of space-time to induce
voltage. Einstein Cartan Evans (ECE) theory has shown why classical elec-
trodynamics is a theory of general relativity in which covariant derivatives
are used with the spin connection playing a central role. These concepts are
applied to a device known as the Bedini machine.
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1.1 Introduction

Recently [1–10] the Einstein Cartan Evans (ECE) field theory has been gen-
erally accepted as the first successful unified field theory on the classical and
quantum levels. It shows that classical electrodynamics is a theory of gen-
eral relativity, not of special relativity. In ECE theory the spin connection
plays a central role in the structure of the laws of electrodynamics and in
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the way the electric and magnetic fields are related to the scalar and vector
potentials. The ECE equations of classical electrodynamics allow the exis-
tence of resonances in potential which can be used to extract electric power
from the structure of space-time. This structure is not the vacuum, the lat-
ter in relativity theory is a universe devoid of all curvature and torsion. The
resonance phenomenon induced by these equations is known as spin connec-
tion resonance (SCR). In this paper it is applied to a device known as the
Bedini machine [11], which has been patented and which has been shown to
be experimentally reproducible and repeatable. In section 1.2 the equations
of classical electrodynamics are given in ECE theory. These are given in the
vector notation used by engineers, and the reduction of the original differen-
tial form equations of ECE theory to the vector equations is given in technical
appendices. In section 3 models of the Bedini device are developed, in section
1.4 the occurrence of resonances is identified and graphed using computer
algebra to check the derivations.

1.2 The Equations of Classical Electrodynamics in
General Relativity

All electromagnetic devices of engineering are governed by these equations,
which are the generally covariant form of classical electrodynamics. Each
device must be considered separately, and the general equations applied sys-
tematically to each device. The electric field in ECE theory is defined in
general by the scalar and vector potentials and by the scalar and vector com-
ponents of the spin connection:

E = −∂A
∂t

− c∇φ − cω0A + cφω. (1.1)

Here φ is the scalar potential, A is the vector potential, ω0 is the scalar part
of the spin connection and ω is the vector part of the spin connection (see
technical appendices). The Coulomb law in ECE theory [1–10] is

∇ · E =
ρ

ε0
:= cµ0J

0 (1.2)

where ε0 is the vacuum permittivity and ρ is the scalar part of the inhomo-
geneous charge current density of ECE theory. The magnetic field in ECE
theory is defined by:

B = ∇ × A − ω × A (1.3)

and the Gauss law of magnetism is:

∇ · B = µ0j
0 (1.4)
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where j0 is the scalar part of the homogeneous charge current density. The
Faraday law of induction in ECE theory is:

∇ × E +
∂B
∂t

= cµ0j (1.5)

where j is the vector part of the homogeneous charge current density and the
Ampère Maxwell law is:

∇ × B − 1
c2

∂E
∂t

= µ0J (1.6)

where J is the vector part of the inhomogeneous charge current density.
The explanation of various devices that are reproducible and repeatable

depends on the systematic application of these general equations. It has been
shown [1–10] that they are resonance equations in general, so that a small
driving term can produce a very large amplification of space-time effects
through the inter-mediacy of the spin connection. Devices which find no expla-
nation in the standard model can be explained in this way. For example, we
consider the Bedini device [11] as one in which an electric pulse produced by
the rate of change of a magnetic field is induced in a generator. The electric
field pulse produces a pulse of electrons in a battery [11] as controlled by Eqs.
(1.1) and (1.2), from which:

∇ · ∇φ +
1
c

∂

∂t
(∇ · A) + ∇ · (ω0A

)− ∇ · (φω) = −µ0J
0. (1.7)

This equation produces resonances in two ways, each of which gives a reso-
nance equation.

1. If it is assumed that the origin of E is purely due to φ, we obtain the
basic resonance equations of paper 63 and 92 of the ECE series [1–10].

2. If it is assumed that the origin of E is purely magnetic, and that the
scalar potential is zero, we have:

1
c

∂

∂t
(∇ · A) + ∇ · (ω0A

)
= −µ0J

0. (1.8)

i.e.

∇ ·
(

1
c

∂A
∂t

+ ω0A
)

= −µ0J
0. (1.9)
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which can be integrated to give a resonance equation. It is also possible to
produce a time dependent resonance equation from Eqs. (1.1) and (1.6). The
Ampère Maxwell law (1.6) is considered to produce a driving term:

∂E
∂t

= c2 (∇ × B − µ0J)driving = −∇∂φ

∂t
− ∂2A

∂t2

− ∂

∂t

(
cω0A

)
+

∂

∂t
(cφω)

(1.10)

so that the most general resonance equation of time-dependent type is:

∂2A
∂t2

+ c
∂ω0

∂t
A + cω0 ∂A

∂t
= c

∂φ

∂t
ω + cφ

∂ω

∂t
+ c2µ0J

− ∇∂φ

∂t
− c2∇ × B.

(1.11)

If there is no charge and current density this equation reduces to:

∂2A
∂t2

+ cω0 ∂A
∂t

+ c
∂ω0

∂t
A = −c2 (∇ × B)driving . (1.12)

There is resonance in A under the following conditions:

1. the scalar part, ω0, of the spin connection is non-zero,

2. the time derivative, ∂ω0

∂t , is non-zero,

3. the curl ∇ × B is non-zero and also time dependent.

When investigating various claims such as the Bedini machine it is necessary
to use equations such as this, which show for example that the magnetic
field in the design must be both space and time dependent, and produced
by a device that satisfies these requirements. That is an example of a design
prediction of ECE theory in engineering.

In addition to Eq. (1.6) there exists the Coulomb law (1.2), which is the
resonance equation [1–10]: [1–10]

∇ ·
(

cφω − ∇φ − ∂A
∂t

− cω0A
)

=
ρ

ε0
. (1.13)

In the absence of charge this equation reduces to:

∇ ·
(

∂A
∂t

+ cω0A
)

= 0 (1.14)
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so ω0 may be eliminated between equations (1.12) and (1.14). Eq. (1.14) is:

∇ · ∂A
∂t

= −c
(
A · ∇ω0 + ω0∇ · A) . (1.15)

Therefore ω0 is governed by Eqs. (1.12) and (1.15) which must be solved
simultaneously. The latter equation can be integrated with the divergence
theorem [12]. For any well behaved vector field V(r) defined with a volume
surrounded by a closed surface S:

∮
S

V · n da =
∫

V

∇ · V d3r. (1.16)

Thus for the Coulomb law 1.12:

∫
V

(
∇ · E − ρ

ε0

)
d3r = 0 (1.17)

i.e.

∮
S

E · n da =
1
ε0

∫
V

ρ(r) d3r. (1.18)

So the integration of Eq. (1.14) is:

∮
S

(
∂A
∂t

+ cω0A
)
· n da = 0 (1.19)

i.e.

∮
S

∂A
∂t

· n da = −c

∮
S

ω0A · n da. (1.20)

Eq. (1.20) is a relation between ω0 and A. The correct way of solving (1.12)
is simultaneously with (1.18). This can be carried out numerically for various
models of ∇ × B produced by various devices. It can be seen that ω0 can
be eliminated and that Eq. (1.12) reduces to an undamped oscillator [1–10]
because ∂A

∂t is eliminated in favour of A. So in this example A can be amplified
to INFINITY for various models of ∇ · B acting as a driving force. There is
no need to model ω0 because it can be expressed in terms of A.
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1.3 Systematic Evaluation of Equations for the Bedini
Machine

If no scalar potential is present, the ECE field equations (1.1–1.6) in the base
manifold take the simple form:

∇ × E + Ḃ = 0 (1.21)

∇ × B − 1
c2

Ė = 0 (1.22)

∇ · B = 0 (1.23)

∇ · E = 0 (1.24)

with the definition equations

B = ∇ × A − ω × A (1.25)

E = −Ȧ − c ω0A. (1.26)

Here the dot denotes the time derivative, A is the vector potential, ω the
vector spin connection and ω0 the scalar spin connection, both in units of
1/m. It is more convenient to transform the scalar spin connection to a time
frequency:

ω0 := c ω0. (1.27)

Eqs. (1.21-1.24) represent a system of eight equations and by the right-hand
side of Eqs. (1.25-1.26) seven variables are defined. In the most general case
the scalar potential Φ is the eights variable so that (1.21)–(1.24) can be
solved uniquely. Here we restrict consideration to the case without charges
and therefore without a scalar potential.

In classical electrodynamics we have the same equations, but without the
spin connection. This leads to an inconsistency for solving the equations.
Sometimes solely the fields E and B are considered, then only the equations
(1.21)–(1.22) can be used. The Gauss and Coulomb law are tried to be handled
as “constraints”, but this leads to an over-determined equation system. In
other cases (when charges and currents are present) the potentials A and
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Φ are taken as variables. Then only the Eqs. (1.22) and (1.24) can be used,
the other two are homogeneous and lead to the trivial solution A = 0. In
contrast, ECE theory presents a perfectly well-defined situation with eight
equations and eight variables.

There are basically two methods to combine these equations to obtain
resonances for particular cases:

1. use (1.21) and (1.22) completely to define driving terms, use (1.25) and
(1.26) as basis for resonance solutions,

2. use the terms Ḃ, Ė in (1.21), (1.22) as driving terms, insert curl of (1.25)
and (1.26) into (1.21) and (1.22) and use these equations for resonance
solutions.

We will see that both methods are not applicable in all possible cases.
In addition to both methods, we have to use one of the equations (1.3),

(1.4). The actual choice depends on the case if ω or ω0 occurs in the equations
(1.21) and (1.22). In the following we work out the distinguished cases 1 and
2 each for Eq. (1.21) (called sub-case a) and Eq. (1.22) (called sub-case b).

1a: Faraday Law as driving term, B field resonance
By definition we have

(∇ × E)driving = −(Ḃ)driving (1.28)

Inserting the time derivative of (1.25) into (1.28):

∇ × Ȧ − ω̇ × A − ω × Ȧ = (Ḃ)driving = −(∇ × E)driving (1.29)

In order to obtain resonance a differential equation of second order in time is
required, therefore we take a further time derivative:

∇ × Ä − ω̈ × A − 2ω̇ × Ȧ − ω × Ä = (B̈)driving (1.30)

This is a resonance equation in A (for constant ω) as well as in ω (for
constant A). The spin connection can be obtained from simultaneously
solving Eq. (1.23). This could be sufficient, if not all components of A or ω
are different from zero. In the most general case further equations have to be
added.

1b: Ampère-Maxwell Law as driving term, E field resonance
In analogy to case 1a we obtain from (1.22):

(∇ × B)driving =
1
c2

(Ė)driving (1.31)
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and by applying (1.26):

Ä + ω̇0A + ω0Ȧ = −(Ė)driving (1.32)

This is an equation for a damped resonance for ω0 > 0. The spin connection
can be determined by combining (1.32) with (1.24).

2a: B field definition as driving term, Faraday Law as resonance
equation
Taking the magnetic field in (1.21) as driving term gives

∇ × E = −(Ḃ)driving. (1.33)

Inserting (1.26) into (1.33):

∇ × Ȧ + ∇ × (ω0A) = (Ḃ)driving (1.34)

or after taking a further time derivative:

∇ × Ä + ∇ × (ω̇0A) + ∇ × (ω0Ȧ) = (B̈)driving (1.35)

which is the equivalent of (1.30) with the other type of spin connection.

2b: E field definition as driving term, Ampère-Maxwell Law as
resonance equation
Starting with Eq. (1.22) we obtain

∇ × B =
1
c2

(Ė)driving (1.36)

and with (1.25):

∇ × ∇ × A − ∇ × ω × A =
1
c2

(Ė)driving (1.37)

or

∇ (∇ · A) − ∇2A − ω (∇ · A) + A (∇ · ω)

− (A · ∇) ω + (ω · ∇)A =
1
c2

(Ė)driving.
(1.38)

This is a resonance equation for the space coordinates of A. Investigat-
ing time-dependent resonances requires a twofold additional time derivation
which makes this equation impractible.
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1.4 Detailed Investigation of the Bedini Machine

1.4.1 Description of the Bedini machine

In the book “Free Energy Generation” [13], see also [14], Bedini explains his
battery charging device of 1984. He presents some variants of the machine
constructed within 20 years. The basic design has remained the same. The
patented Bedini machine inventor claims that his machines are able to extract
energy from the surrounding space in the form of radiant energy. The authors
here attempt to show that the energy produced by these machines is the
result of disturbing the local space-time unit volume, creating a resonance
effect, which allows energy to flow out of the local unit volume, in the form of
asymmetric electromagnetic wave forms into a rectifier circuit, where it can
be then sent to a storage device. The mathematical expressions developed
are based on ECE field theory. The resulting expressions will allow electrical
designers to produce productive circuits, based on this math, since the inven-
tor has not furnished an adequate explanation of the machines’ operation.
One of the authors has replicated two of the Bedini machines successfully,
and others have had success building and operating the machines.

The Bedini machine has several distinct elements (see Fig. 1.1). The input
power supply, which can be a battery or a rectified power supply from an
external supply, provides the transducer coil and trigger circuitry with energy
to pulse the unit volume through the trigger winding. The magnet induces
an asymmetric pulse into the transducer core, which induces an e-m pulse in

Fig. 1.1. Bedini machine (from [13], p. 47).
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the trigger winding, power winding, and generator winding. The trigger pulse
causes power to flow into the power winding, giving a boot to the magnet as
it goes on by, thereby powering the rotor to the next magnet. The transducer
pulse from the coils flows into the unit volume, upsetting the local field, and
the resulting return energy is rectified after flowing through the generator
winding.

All of these windings of the transducer are separate coils, wound concen-
trically on a spool, which has a core consisting of mild iron rods, typically
1/16” in diameter. Once the rotor is spun manually, and the power source
and storage device are connected, the rotor will accelerate to a select speed
determined by a tuning rheostat, and the machine will maintain that speed
indefinitely, charging the storage device, using less energy to run than it
stores, thereby achieving over unity in its operation. One of the authors has
determined that the machine operates more efficiently at 24 Volts DC, than at
12 Volts DC, and the machine operates at almost twice the rpm as compared
to 12 Volt operation.

Mr. Bedini has built several demonstrator machines in the kilowatt size,
however, one of the authors’ machines is only capable of 10-15 watts of output,
but this size is adequate to provide meaningful test results. One of the authors
is presently building a larger machine to replicate Mr. Bedini’s claims of higher
power outputs. In addition to the rotor style machines, the inventor has shown
solid state designs, which the authors have not replicated yet, but others
have, with limited output success. A company using Mr. Bedini’s designs is
presently marketing a line of battery chargers claiming to use radiant energy
to enhance battery life and longevity.

1.4.2 Models of the Bedini machine

Charging of a battery means a flow of ions in the electrolyte in direction
reverse to the discharging current. According to the explanations of Bedini,
the battery charging process is evoked by high frequency pulses. This type of
charging is completely different from the conventional DC charging process
where the ion transport is effected by applying a DC voltage. Bedini points
out that the high frequency / high voltage oscillations initiate a coupling to
spacetime so that the ions resonate and move in the direction opposite to
the discharge current. No significant conventional recharging energy has to
be expended in this process.

Key of understanding the process is the mechanism of tapping the vac-
uum background energy, i.e. to evoke a resonant coupling to the spacetime
background. As has been shown by ECE field theory [papers 63, 92], a cou-
pling to spacetime background can be achieved by a resonance circuit. Such
an original circuit from Bedini is shown in Fig. 1.1.

The key component of the Bedini machine is the trifilar wound coil which
acts as a combined transmitter-receiver transducer. In the following we use the
working hypothesis that the spacetime coupling takes place by means of this
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coil. Therefore we need not consider the complex electro-chemical processes
in the battery, and an electrical potential Φ can be omittet as already done
in Equations (1.21–1.26).

Since we have to model the fields of a cylindrical coil, we choose cylinder
coordinates (r, ϕ, z) for convenience with unit vectors er, eϕ, eZ as shown
in Fig. 1.2. Inside a conventional coil the magnetic field is parallel to the
z direction and the vector potential is tangential to circles around B. We
assume that the magnetic field maintains its direction in case of resonance.
Then the vector spin connection has to lie in the r-ϕ plane as well as A. In
the simplest case it is perpendicular to A.

Whether type a or b of setcion 3.1 should be chosen for modeling the
device, depends on the type of excitation mechanism. Inside the transducer
we have

(∇ × B)driving ≈ 0, (1.39)

during the pulsing phase. In the preceding phase when a rotor-mounted mag-
net approaches the transducer, the moving magnet induces a non-symmetric
magnetic field within the iron core of the transducer. Therefore condition
(1.39) is not always valid. To obtain a viable model, we make the following
additional simplifying assumptions. The B field is in z direction:

B =

⎛⎝ 0
0

BZ

⎞⎠ . (1.40)

The vector potential in classical electrodynamics then has only a ϕ and r
component:

A =

⎛⎝ Ar

Aϕ

0

⎞⎠ . (1.41)

Fig. 1.2. Cylindrical coordinate system and fields in a coil.
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Since the spin connection ω cannot be in parallel to A and B according to
Eq. (1.25), we choose

ω =

⎛⎝ ωr

ωϕ

0

⎞⎠ . (1.42)

Due to the rotational symmetry of the device, there cannot be a ϕ dependence
of the fields. In total we have the functional dependencies

BZ = BZ(r, t)
Ar = Ar(r, t)
Aϕ = Aϕ(r, t)
ωr = ωr(r, t)
ωϕ = ωϕ(r, t)
ω0 = ω0(r, t)

(1.43)

With (1.40–1.42) we have (using the differential operators in cylinder coordi-
nates)

∇ × A =

⎛⎝ 0
0

1
r

∂
∂r (rAϕ) − ∂Ar

∂ϕ

⎞⎠ , (1.44)

ω × A =

⎛⎝ 0
0

ωrAϕ − ωϕAr

⎞⎠ . (1.45)

The divergence of a vector V is in cylindric coordinates:

∇ · V =
1
r

∂

∂r
(rVr) +

1
r

∂

∂ϕ
(Vϕ) +

∂

∂z
(VZ) . (1.46)

We are now ready to apply the methods 1a, 1b, 2a. Starting with 1a, we
obtain from Eq. (1.30) with the special form of A and ω (1.40-1.45):

1
r

∂

∂r
(rÄϕ) − ∂Är

∂ϕ
− ω̈rAϕ + ω̈ϕAr − 2(ω̇rȦϕ − ω̇ϕȦr)

− ωrÄϕ + ωϕÄr = (B̈Z)driving

(1.47)

From (1.23) follows

∇ · (∇ × A − ω × A) = 0 (1.48)
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or

∂

∂z

(
1
r

∂

∂r
(rAϕ) − ωrAϕ + ωϕAr

)
= 0. (1.49)

This equation is trivially fulfilled. Even if we additionally assume Ar = ωϕ = 0
we have one equation with two unknowns Aϕ and ωr so that no unique
solution is obtained.

Considering the alternative case 2a we get from Eq. (1.35):

1
r

∂

∂r

(
rÄϕ + rω̇0Aϕ + rω0Ȧϕ

)
− ∂

∂ϕ

(
Är + ω̇0Ar + ω0Ȧr

)
= (B̈Z)driving.

(1.50)

From Eq. (1.24) follows

∇ ·
(
−Ȧ − ω0A

)
= 0 (1.51)

or

1
r

∂

∂r

(
rȦr + rω0Ar

)
+

1
r

∂

∂ϕ

(
Ȧϕ + ω0Aϕ

)
= 0 (1.52)

According to (1.43) Eqs. (1.50) and (1.52) can be simplified to

1
r

∂

∂r

(
rÄϕ + rω̇0Aϕ + rω0Ȧϕ

)
= (B̈Z)driving (1.53)

1
r

∂

∂r

(
rȦr + rω0Ar

)
= 0 (1.54)

These are two equations for three unknowns and not unique as before.
Finally we apply case 1b. This is different from the previous ones since

the electrical field is considered to be the driving term. From Eq. (1.32) we
obtain the two equations

Är + ω̇0Ar + ω0Ȧr = −(Ėr)driving (1.55)

Äϕ + ω̇0Aϕ + ω0Ȧϕ = −(Ėϕ)driving (1.56)
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and from Eq. (1.24):

1
r

∂

∂r

(
rȦr + rω0Ar

)
= 0 (1.57)

or

Ȧr +
(

ω0 + r
∂ω0

∂r

)
Ar + r

∂Ȧr

∂r
+ rω0

∂Ar

∂r
= 0. (1.58)

We see that the spin connection is coupled to the radial part of the vector
potential. This indicates that the unit volume interacting with spacetime may
be somewhat extended beyond the transducer. The occurrence of Ė implies
a non-vanishing curl of B according to (1.31).

The result (1.57) can further be simplified by applying the divergence the-
orem as explained at the end of section 1.2. The surface integral of Eq. (1.19)
is to be taken over the cylinder surface of the model. The parts over the cir-
cular areas cancel out due to the assumed symmetry in z direction. For the
cylindrical part the ϕ component of the vector potential is perpedicular to
the surface normal and does not contribute anything. The only contributing
part is the radial component:∫

V

∇ · Ad3r =
∫

S

(Ȧr + ω0Ar)da = 0 (1.59)

Since Ar and ω0 are independent on the individual surface points, the integral
can be evaluated trivially and results in

ω0 = − Ȧr

Ar
. (1.60)

The equations (1.55, 1.56, 1.60) are three equations for three unknowns Ar,
Aϕ, ω0. This set of equations has to be solved numerically to provide guid-
ance to designers in sizing the transducer, designing the trigger and power
circuits, and predicting power outputs. Since the unit volume is surrounded
by the large number of unit volumes in a spherical configuration(the rest of
space), the theoretical power input to the machine transducer is limited by
its conductor size and impedance seen looking into the transducer from the
space side.

This paper discusses the Bedini machine in particular, but the concept of
a transducer acting as a transmitter-receiver for power extraction from the
surrounding space should be applicable to other machine designs also.

The inventor has put forth a hypothesis as to how his machines oper-
ate, which is non-conventional in its premise. The authors here suggest that
the latest ECE theory will provide a rational explanation to the machines’
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operation, using conventional mathematical notation, and recognized physical
theory.

1.4.3 Resonance behaviour of the vector potential

Without doing any numerical calculations, we can demonstrate that resonance
solutions for Eqs. (1.55, 1.56) exist. We assume a harmonic time dependence

Ar = A1(r) sin(ωt) (1.61)
ω0 = ω1(r) sin(ωt) (1.62)

with a frequency ω (not to be confused with the spin connection ω0) and
radius dependent functions A1 and ω1. Let’s further denote the right-hand
side of (1.55) by f1, then this equation can be written:

2A1ω1ω cos(ωt) sin(ωt) − A1ω
2 sin(ωt) = −f1. (1.63)

For ωt = π/4 we have

sin(ωt) = cos(ωt) =
1√
2

(1.64)

and (1.63) simplifies to

A1

(
ω1ω − ω2

√
2

)
= −f1 (1.65)

which gives the solution for Ar:

A1 =
f1

ω2√
2
− ω1ω

. (1.66)

There is resonance when the denominator approaches zero, i.e.

ω1 =
ω√
2
. (1.67)

If we had defined (1.61, 1.62) by the cosine function, we had got the same
value for ω0 with a negative sign. From this simple model we learn that the
spin connection can assume both signs (in contrast to a real frequency) and
show up sharp resonances for certain phases of the time period. This is in
accordance with the experimental findings. From the original Eqs. (1.55, 1.56)
we would expect a damped oscillation, but these equations are non-linear
and therefore some unexpected results can occur, in this case an undamped
oscillation.
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1.4.4 Computation of the energy balance

The theory should provide a method to estimate the energy balance of the
Bedini machine. According to the previous section it is assumed that the
excess energy comes from the spacetime processes in the extended unit vol-
ume, where they are evoked by the transducer. So a calculation has to compare
the energy density of the input fields (E)driving or (B)driving to the energy of
the total fields being present in the resonance case. The result may depend on
whether we consider the energy of the force fields only or whether we include
the effects on the spacetime potential A. In the first case we can define the
energy densities for input and output:

uin =
ε0
2

(E2)driving +
1

2µ0
(B2)driving, (1.68)

uout =
ε0
2

E2 +
1

2µ0
B2. (1.69)

The resulting total energies then are obtained by integrating over the unit
volume and time:

Ein =
∫

uin d3r dt (1.70)

Eout =
∫

uout d3r dt (1.71)

and the “coefficient of performance” is

COP =
Eout

Ein
. (1.72)

Alternatively, the output energy can be related to the spacetime potential.
From the minimal prescription of momentum density p

p → p + eA (1.73)

we can define the kinetic energy density of the field by

u =
e2A2

2m
(1.74)

where m is the “mass” of the field volume. According to the de Broglie equa-
tion

m =
�ω

c2
(1.75)



1.4 Detailed Investigation of the Bedini Machine 17

the mass corresponds to a frequency ω. This leads to the expression

u = uout =
e2c2

2�ω
A2. (1.76)

1.4.5 Analytical and numerical solutions

The equations to be solved for the model we have developed (Eqs. 1.55, 1.56,
1.60) read

Är + ω̇0Ar + ω0Ȧr = −f1 (1.77)

Äϕ + ω̇0Aϕ + ω0Ȧϕ = −f2 (1.78)

ω0 = − Ȧr

Ar
. (1.79)

with driving terms f1(r) and f2(r). Instead of Eq. (1.79) we can alternatively
use its original form (1.58) without application of the divergence theorem:

Ȧr +
(

ω0 + r
∂ω0

∂r

)
Ar + r

∂Ȧr

∂r
+ rω0

∂Ar

∂r
= 0. (1.80)

The difference is that the original form represents a differential equa-
tion in r while the r differentiation has vanished in the other form. Thus
Eqs. (1.77–1.79) are only to be solved in the time domain which is a great
alleviation. In this case Eq. (1.79) can be inserted into (1.77). Then all terms
on the left cancel out, leading to the condition

f1 = 0. (1.81)

Obviously this is a compatibility condition, indicating that a driving force f1

cannot be applied. The second Equation (1.78) can be solved analytically by
computer algebra and gives the particular solution

Aϕ = ω0 f2

(
e−ω0 t

∫
eω0 t

ω0 ω̇0 t − ω̇0 + ω2
0

dt −
∫

1
ω0 ω̇0 t − ω̇0 + ω2

0

dt

)
(1.82)

As already made plausible in section (1.4.3), this is a resonance equation if
the denominator goes to zero. This means that resonances occur at solutions
of the differential equation

ω0 ω̇0 t − ω̇0 + ω2
0 = 0. (1.83)
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Computer algebra gives for this equation the general solution

ω0 t − log (ω0) = c (1.84)

with a constant c. This is a transcendent equation for ω0. Since c is arbitrary,
there is an infinite number of resonances in the whole interval of real numbers
for ω0.

All further investigations are made by a numerical model. As we have
seen by analysing Eq. (1.77) the vector potential Ar can be chosen freely.
Considering the Bedini machine, such a radial component can only be created
by an asymmetric disturbance of the field potential of the transducer coil.
This is achieved by the magnets of the wheel passing the transducer. We
model these pulses by a sinoidal function:

Ar(t) = A1 sin6(ωt) (1.85)

with an arbitrary amplitude A1 and a time frequency ω. This function and
its time derivative are shown in Figs. 1.3 and 1.4 for three frequencies. With
this ansatz, Eq. (1.79) takes the form

ω0(t) = −6ω cot(ωt). (1.86)

This function has vertical tangents where the values approach infinity, see
Fig. 1.5 for a plot of |ω0| for three frequencies in a logarithmic scale. Conse-
quently, the derivative shows also this behaviour (Fig. 1.6).

Eq. (1.78) has been solved numerically for Aϕ. The driving force f2 was
assumed to be in proportion to the “symmetry breaking” potential Ar. With
ω0 having the singular behaviour, the solution spans a remarkable order of
magnitude and is vulnerable to numerical instabilities. Therefore the solution
was checked by inserting it back into Eq. (1.78) and checking for equality
with f2. In all cases the equality was maintained within sufficient precision.
The result (Fig. 1.7) shows giant resonance peaks over 15 orders of magnitude
which occur in coincidence with the structure of ω0. Obviously these peaks
correspond to the peak signals in the Bedini machine. The time frequency is
to be identified with the passing rate of the magnets over the transducer. To
make comparison even more appropriate, in Fig. (1.8) the derivative of Aϕ is
shown which should correspond to the induced voltage

Uind = −Ȧϕ. (1.87)

The structure is very similar to that of Aϕ itself.
Next we have tested the dependence of the solution on the driving force

f2. It results that Aϕ is practically insensitive to the form of f2, provided the
value is different from zero where ω0 has its poles. It is even sufficient to take
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a spike pulse of one percent of the time period. Fig. 1.9 shows the result for
a constant value of f2.

Since the zero crossing of Ar is essential for the resonances, we have mod-
ified Eq. (1.85) by adding a constant value of 0.001, thus displacing the curve
of Fig. 1.3 by this value from zero. The result (Fig. 1.10) shows a far smaller
resonance structure indicating that resonances are very sensitive to the form
of Ar via ω0.

Next we inspect the development of the maximum amplitude. In Fig. 1.11
the maximum difference over the first six time periods is plotted in depen-
dence of the time frequency. Obviously the resonance is most dramatic for low
frequencies. In the next figure (Fig. 1.12) the maximum amplitude difference
was recorded over a constant simulated time of 0.1 sec. To avoid numerical
instabilities inferred by the calculation we used a modified Ar input value as
discussed for Fig. 1.10 (shifted by 0.1 upwards, no zero crossing). Solutions
are stable in the low frequency range but there are windows of unstability for
higher frequencies. We argue that the differential equation (1.78) can show
chaotic behaviour and must be carefully evaluated.

Finally we present the amount of transferred energy integrated over time.
According to Eq. (1.76) this is proportional to

u(t) =
∫ t

0

A2
ϕ(t′)
ω

dt′. (1.88)

This term is represented in Fig. 1.13. Since Aϕ crosses zero at the resonances
(remember that the modulus is shown in the figures), a considerable amount
of energy is pushed back to the vacuum after having been transferred to the
system, but there is enough energy left after each resonance peak so that the
energy in the system rises considerably.

As a last item in this section let us consider the radius dependence of the
fields which can not be determined from Eqs. (1.77–1.79) as discussed above.
Therefore let’s start from Eqs. (1.77) and (1.80):

Är + ω̇0Ar + ω0Ȧr = −f1 (1.89)

Ȧr +
(

ω0 + r
∂ω0

∂r

)
Ar + r

∂Ȧr

∂r
+ rω0

∂Ar

∂r
= 0 (1.90)

We will make an ansatz for Ar and compute the solution for ω0 which is
compatible with this. We choose

Ar = C e−αr−iβt (1.91)
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which is a conventional approach for a radially decreasing vector potential
which oscillates in time with frequency β. Inserting this into Eq. (1.89) results
in a differential equation for ω0 in the variable t:

− (β2 + i ω0 β − ω̇0

)
e−α r−i β C = −f1 (1.92)

The solution of this equation is

ω0(t) = c(r) eiβt + i β − f1t

C
eαr+i βt (1.93)

with a constant c(r) which is dependent on r in general. Inserting (1.93) into
(1.90) yields

(i α β r − ω0 α r + ω̇0 r − i β + ω0) e−α r−i β t C = 0 (1.94)

which has the solution

ω0(r) =
c(t)
r

eα r + i β. (1.95)

Since both solutions (1.93) and (1.95) must be compatible, we have to assume

c(r) = 0. (1.96)
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By comparison of both equations for ω0 (1.93 and 1.95) we find

c(t) = −f1 t

C
eiβ t (1.97)

and finally

ω0(r) = −f1 t

C
eα r+iβ t + iβ. (1.98)

We see that the spin connection has a diverging behaviour in space as well
as in time which is consistent with the results of the numerical model.

1.4.6 Summary and discussion

The Bedini device has been analysed by analytical and numerical methods.
Based on a model of cylindrical symmetry of the transducer, which is consid-
ered to be the essential part for spacetime coupling, the following mechanism
of spacetime interaction could be identified:

Under undisturbed conditions, the magnetic field in the transducer is
cylindrically symmetric. The radial part of the vector potential must vanish
due to the Gauss law. The passing magnets of the wheel distort the symmetry
of the magnetic field in the transducer by inducing an asymmetric signal. This
leads to a radial component of the vector potential which was not present
before. The vector potential changes in time and therefore induces an elec-
tric field. Consequently, the Coulomb law has to be fulfilled as an additional
condition, in this case for a vanishing charge density (the electric field is com-
pletely a radiated field). The ECE field equations show that for the Coulomb
law the radial component of the vector potential has either to be zero, or
the scalar spin connection must exist to compensate a non-vanishing radial
component of the vector potential. The latter case is fulfilled in the Bedini
device and leads to the observed resonant behaviour.

A model has been developed which takes a timely varying radial vector
potential Ar as a given input. By means of the Coulomb law, a spin connection
ω0 is produced. The zero crossings of Ar lead to a singular value of the spin
connection, leading in turn to very high values of the ϕ component of the
vector potential. These are the giant resonances which are strong enough
in practice to transfer significant amounts of energy from spacetime to the
machine.

For some spacetime resonance experiments it is reported that there is a
glowing or fluorescent light effect around the apparatus when it is at res-
onance. At the same time the measured current of the driving mechanism
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takes a minimum. This can qualitatively be explained by analyzing the con-
tributions of the ECE electric charge current density. It is given in general
by

J = (R̃ ∧ A − ω ∧ F̃ ) (1.99)

(in short hand notation) for the Hodge duals of curvature R̃ and the electro-
magnetic field F̃ as well as the potential A. At spin connection resonance, it
may happen that the term ω ∧ F̃ outweights the curvature term. Then the
charge current can become significantly smaller while the region of space has
a high energy density due to the large spin connection term. Obviously no
“negative energy” is required to explain the effect.

The only experimental feature which cannot be directly related to our
model is the required behaviour of the driving current. According to Bedini,
the motor pulse acts as driving force for the spacetime resonance and must
be very short and sharp without oscillations. The model calculations showed
that the form of the driving force is not important as long as it is different
from zero at the diverging time positions of the spin connection.

Based on the results of this paper we can give some recommendations
for further investigations and improvements of the Bedini design, under the
prerequisite that our model is correct:

1. The vector potential Ar has to be provided in a way to have zero cross-
ings. This could be enforced by positioning magnets with alternating
polarity on the wheel.

2. Since mechanical parts limit the lifetime of a device, a design without
moving parts is desirable. The principles of the design can be retained
by replacing the wheel by a rotating electromagnetic field (for example
based on a three-phase AC voltage). Then arbitrary rotation frequencies
can be applied without mechanical restrictions.

3. Effects of the asymmetry of the signal inducing the resonance should
be investigated. For example it could be tested if a linear motion of a
magnet perpendicular to the transducer would evoke resonance effects
too.
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Appendix 1: Reduction of Form Notation to
Vector Notation

In differential form notation the electromagnetic field in ECE theory is:

F a = d ∧ Aa + ωa
b ∧ Ab (A.1)

which in tensor notation is 1–10:

F a
µν = ∂µAa

ν − ∂νAa
µ + ωa

µbA
b
ν − ωa

νbA
b
µ. (A.2)

The electromagnetic potential is:

Aa
µ = A(0)qa

µ (A.3)

where qa
µ is a rank two mixed index tensor defined by:

V a = qa
µV µ. (A.4)

Here V a and V µ are four vectors in different frames of reference labeled a and
µ in four dimensional space-time. Consider a particular example of Eq. (A.2):

F 1
23 = ∂2A

1
3 − ∂3A

1
2 + ω1

2bA
b
3 − ω1

3bA
b
2. (A.5)

Either side of the equation there are rank three tensors whose components
must correspond to each other on both sides. Thus:

F 1
23 = (∂2A3 − ∂3A2)

1 +
(
ω2bA

b
3 − ω3bA

b
2

)1
. (A.6)

Inside the brackets on the right hand side are anti-symmetric tensor compo-
nents which correspond to the components of an axial vector (magnetic field)
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or polar vector (electric field). The magnetic vector components are defied
by:

B1
i =

1
2
εijkF 1

jk (A.7)

thus:

B1
1 =

1
2

(ε123F23 + ε132F32)
1 = F 1

23. (A.8)

This is recognized as the X component:

BX = B1
1 (A.9)

of the magnetic field:

B = BX i + BY j + BZk. (A.10)

Similarly:

BY = B2
2 = F 2

31, (A.11)

BZ = B3
3 = F 3

12. (A.12)

These results were checked by computer in paper 93 of the ECE series [1–10].
So Eq. (A.6) becomes:

B = ∇ × A − ωb × Ab. (A.13)

In this notation: (
ωb × Ab

)
X

=
(
ω3bA

b
2 − ω2bA

b
3

)1
(A.14)

where the minus sign has been introduced following the usage of previous
papers.

These results are obtained in the special case:

a = µ (A.15)

in Eq. (A.4). This means that the vectors V a and V µ are written in the same
frame of reference. Thus qa

µ is diagonal in this special case:

V 0 = q0
0V 0, V 1 = q1

1V 1, V 2 = q2
2V 2, V 3 = q3

3V 3, (A.16)
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and from Eq. (A.3), Aa
µ must be diagonal also. So in Eq. (A.14)

(
ωb · Ab

)
X

=
(
ω32A

2
2 − ω23A

3
3

)1
= ω1

32A
2
2 − ω1

23A
3
3. (A.17)

Similarly: (
ωb × Ab

)
Y

= ω2
13A

3
3 − ω2

31A
1
1, (A.18)

(
ωb × Ab

)
Z

= ω3
21A

1
1 − ω3

12A
2
2. (A.19)

Therefore the meaning of the b index is given by Eqs. (A.17) to (A.19). The
final result is:

B = ∇ × A − ω × A (A.20)

as used in previous papers on SCR [1]- [10]. The spin connection has been
reduced here to a vector ω. The components of this vector in analogy with
Eqs. (A.9) to (A.12) are:

ωX = ω1
1 = ω1

32 = −ω1
23, (A.21)

ωY = ω2
2 = ω2

31 = −ω2
13, (A.22)

ωZ = ω3
3 = ω3

12 = −ω3
21. (A.23)

So:

ω = ωX i + ωY j + ωZk. (A.24)

Finally if we adopt the complex circular basis [1]- [10]:

B(3)∗ = ∇ × A(3)∗ − iω(1) × A(2) (A.25)

and if:

ω(1) = gA(1) (A.26)

we obtain the B(3)∗ spin field:

B(3)∗ = −igA(1) × A(2). (A.27)
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Appendix 2: Derivation of the Electric Field in
Vector Notation

For the electric field we consider:

F i
0i = (∂0Ai − ∂iA0)

1 + ωi
0iA

i
i − ωi

i0A
0
0, i = 1, 2, 3 (B.1)

which is equivalent in vector notation to:

E = −∇φ − ∂A
∂t

− cω0A + cφω. (B.2)

Therefore

−
(

∇φ +
∂A
∂t

)
X

= (∂0A1 − ∂1A0)
1
, (B.3)

−
(

∇φ +
∂A
∂t

)
Y

= (∂0A2 − ∂2A0)
2
, (B.4)

−
(

∇φ +
∂A
∂t

)
Z

= (∂0A3 − ∂3A0)
3
, (B.5)

and

− (cω0A − cφω
)
X

= ω1
01A

1
1 − ω1

10A
0
0, (B.6)

− (cω0A − cφω
)
Y

= ω2
02A

2
2 − ω2

20A
0
0, (B.7)

− (cω0A − cφω
)
Z

= ω3
03A

3
3 − ω3

30A
0
0. (B.8)

Thus:

A = AX i + AY j + AZk. (B.9)
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where

AX = A1
1, AY = A2

2, AZ = A3
3. (B.10)

and

ω = ωX i + ωY j + ωZk. (B.11)

where

ωX = ω1
10, ωY = ω2

20, ωZ = ω3
30. (B.12)

The scalar part of the spin connection is defined by:

cω0 = −ω1
01 = −ω2

02 = −ω3
03 (B.13)

and the scalar potential is defined by:

cφ = −A0
0. (B.14)

So the electric and magnetic field in general relativity (ECE theory) are:

E = −∇φ − ∂A
∂t

− cω0A + cωφ. (B.15)

B = ∇ × A − ω × A. (B.16)
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